
The NOW MOSIX and its Preemptive Process Migration Scheme

�

Amnon Barak, Oren Laden, Yuval Yarom

Institute of Computer Science

x

The Hebrew University

Jerusalem 91904, Israel

Abstract

Recent advancements in microprocessors and

network technologies have made Network of

Workstations (NOW) a feasible alternative to

parallel computers for high performance, time-

sharing and interactive computing. MOSIX is

an enhancement of UNIX that allows clusters

of computers and workstations to share their re-

sources. It was originally developed as a \single-

system" image operating system for clusters of

LAN and bus connected, distributed memory

multicomputers, where the whole cluster appears

to be one system. Recently, MOSIX was re-

designed for network of workstation con�gura-

tions using the \home" model, in which all the

user's processes are created and seem to run at

the user's (home) workstation. Like all the pre-

vious versions, the NOW MOSIX supports ef-

�cient, transparent work distribution and load-

balancing by preemptive process migration. This

creates an e�cient, resource sharing execution

environment for multiple processes, with maxi-

mal performance and high degree of overall re-

source utilization. This paper describes the latest

version of MOSIX for NOW con�gurations and

its preemptive process migration scheme.

Key words: Distributed systems, dynamic load-

balancing, high performance systems, network of

workstations, preemptive process migration.

�

Supported in part by a grant from the MOD.

x E-mail: famnon, orenl, yvalg@cs.huji.ac.il.

WWW: http://www.cs.huji.ac.il/papers/distrib/

1 Introduction

The increased interest in Network of Worksta-

tions (NOW) as an alternative to parallel com-

puters for high performance and interactive com-

puting [1], requires the use of policies for dy-

namic work distribution. This is necessary to

support a exible use of personal workstations,

i.e., to utilize idle workstations and to relieve

a workstation when its owner wishes so. The

main policies for dynamic work distribution are

load balancing and load sharing, that use some

form of remote execution and process migration.

These policies can perform initial distribution of

the work load among the workstations and re-

distribution of the work load when the system

becomes unbalanced. One mechanism that can

transparently perform these tasks e�ciently is a

preemptive process migration, which combined

with load balancing or load sharing can maxi-

mize the performance, respond to resource avail-

ability and achieve high degree of overall utiliza-

tion.

In spite of the advantages of preemptive pro-

cess migration only few operating systems have

implemented automated load-balancing [2, 10]

or load sharing [8] policies using preemptive pro-

cess migration. Instead, most existing systems

provide explicit user-controlled remote execution

and migration, while some other systems pro-

vide automated remote executions, but perform

preemptive process migration at the explicit re-

quest of a user. For a survey of systems that pro-

vide process migration see [13]. We note that

most parallel programming environments, e.g.

PVM [9], P4 [5], Linda [6] do not support pre-

emptive process migration, although some work

has been reported for PVM [7].

1

This paper describes the latest version of

MOSIX, a UNIX based multicomputer oper-

ating system for a NOW that supports pre-

emptive process migration for load balancing.

MOSIX was originally developed as a \single-

system" image operating system for clusters of

distributed memory, LAN and bus connected

computers, where the whole cluster appears to

the user's processes as one system. In order

to support preemptive process migration, the

UNIX kernel was partitioned to site-dependent

and site independent parts to allow the user pro-

cess to execute in a site independent mode. This

development required a major restructuring of

the UNIX kernel, upon which MOSIX is based,

the development of several new features, e.g. a

communication protocol between the two parts

of the kernel and the use of a unique, network-

wide naming as well as the development of a dis-

tributed �le system that did not exist in UNIX at

that time. While the above system image model

of MOSIX has an elegant design, supports size

scalability and is easy to use for running parallel

applications, its implementation became increas-

ingly more di�cult. This is due to the frequent

updates of UNIX and the unique kernel archi-

tecture of MOSIX, which required major mod-

i�cations of the UNIX kernel. In spite of the

complexity of this project, �ve di�erent version

of MOSIX were developed, for di�erent architec-

tures and for di�erent versions of UNIX [2].

Recently, MOSIX was redesigned for a NOW

con�guration using the \home" model which is

similar to the \home node" of Sprite [8]. In this

model all the user's processes are created and

seem to run at the user's \home" workstation.

Unlike the previous versions of MOSIX, where a

process could access any resource directly from

any location by using its unique (global) name,

in the \home" model the resources are addressed

relatively to the user's working environment, as

de�ned in each user's workstation. In order to

be able to support load balancing it was nec-

essary to enhance the UNIX kernel with mech-

anisms for preemptive process migration, load-

balancing and communication, to allow the pro-

cess to call the current workstation kernel di-

rectly for local services and to communicate with

the home workstation for services that require

the process environment. These enhancements

are implemented at the operating system ker-

nel, without changing the UNIX interface, and

they are completely transparent to the applica-

tion level.

In comparison to the previous versions of

MOSIX, the implementation of the NOW

MOSIX was relatively simple because it was con-

�ned to the development of the process migra-

tion and load-balancing mechanisms. Otherwise,

MOSIX uses existing mechanisms of UNIX, e.g.

NFS, without modifying the internal structure of

the UNIX kernel. Execution of processes under

UNIX with the MOSIX enhancements creates an

e�cient execution environment that allows many

users to share the resources of the NOW, with

maximal performance and e�cient overall uti-

lization of the available resources. Experience of

executing parallel processes under PVM [9] with

the MOSIX process migration enhancements [3],

shows a dramatic improvement in the NOW uti-

lization and a signi�cant speedup of parallel ap-

plications.

This paper is organized as follows: the next

section presents the NOW MOSIX and its

unique properties. Section 3 presents the pro-

cess migration scheme and gives some details

about its implementation. Section 4 shows the

e�ciency of the load balancing algorithms by

comparing the performance of MOSIX to the op-

timal policy for the execution of parallel tasks.

Our conclusions and future plans are given in

Section 5.

2 What is MOSIX

MOSIX is an enhancement of UNIX that al-

lows distributed-memory multicomputers, in-

cluding LAN connected network of workstations,

to share their resources by supporting preemp-

tive process migration and dynamic load bal-

ancing among homogeneous subsets of nodes.

These mechanisms respond to variations in the

load of the workstations by migrating processes

from one workstation to another, preemptively,

at any stage of the life cycle of a process. The

granularity of the work distribution in MOSIX

is the UNIX process. Users can bene�t from

2

the MOSIX execution environment by initiat-

ing multiple processes, e.g. for parallel execu-

tion. Alternatively, MOSIX supports an e�cient

multi-user execution environment.

The NOW MOSIX is designed to run on con-

�gurations that include personal workstations,

�le servers and CPU servers that are connected

by LANs, a shared bus, or fast interconnection

networks. In these con�gurations each worksta-

tion (node) is an independent computer, with

one or more (shared-memory) processors, lo-

cal memory, communication and I/O devices.

A low-end con�guration may include several

workstations that are connected by Ethernet.

A larger con�guration may include additional

�le and CPU servers that are connected by a

high speed ATM LANs. A high-end con�gura-

tion may include a large number of nodes that

are interconnected by a high performance, scal-

able, switch interconnect that provide low la-

tency and high bandwidth communication, e.g.

Myrinet [4].

MOSIX can be implemented for any version

of UNIX and for any hardware, but the pro-

cessors must be homogeneous to allow process-

migration. Users interact with the multicom-

puter via their own workstations. As long as

the load of the user's workstation is light, all the

user's processes are con�ned to the user's work-

station. When this load increases above a certain

threshold level, e.g. the load created by one CPU

bound process, the process migration mechanism

(transparently) migrates some processes to other

workstations and to the CPU servers.

2.1 The main properties of MOSIX

MOSIX supports the UNIX interface and all its

mechanisms. It also supports:

� Network transparency - for all cross ma-

chine operations, i.e. for network related

operations, the interactive user and the ap-

plication level programs are provided with a

virtual machine that looks like a single ma-

chine. When a process issues a system call,

it is the responsibility of the local kernel (in

the machine where the process resides) to

perform network-wide operations to execute

the call.

� Dynamic load balancing - that initiates

process migrations in response to load uc-

tuations and resources availability, to im-

prove the performance of multiple processes

by distributing the load evenly among the

workstations. The main algorithms of the

load-balancing policy are the load calcu-

lation algorithm, that measures the local

load; the information dissemination algo-

rithm and the (competitive) migration con-

sideration algorithm, that makes the �nal

decision based on the available load infor-

mation, the relative speed of the nodes and

other parameters [2]. We note that all

the above algorithms are executed by each

node, in a distributed manner and they are

not synchronized.

� Preemptive process migration - that

can migrate any user's process, transpar-

ently, at any time, to any available node.

The migration itself involves the creation

of a new process structure in the remote

site, followed by a copy of the process page

table and the \dirty" pages. After a mi-

gration there are no residual dependencies

other than at the home workstation. The

process resumes its execution in the new site

by few page faults, which bring the neces-

sary parts of the program to that site.

� Decentralized control and symmetry

- that exploits the redundancy of the hard-

ware to achieve a high degree of availability,

without using a master-slave relationships

between the workstations. The organiza-

tion of the system data bases is completely

decentralized and no machine possesses in-

formation on all the system objects of any

type. Control is also decentralized. Each

workstation is capable of operating as an in-

dependent system and makes all its control

decisions independently. This property al-

lows a dynamic con�guration, where work-

stations may join or leave the network with

minimal disruptions.

� File system - MOSIX uses standard NFS.

The most noticeable properties of executing

applications on MOSIX are its network trans-

3

parency, the symmetry and exibility of its con-

�guration, and its preemptive process migration.

The combined e�ect of these properties is that

application programs do not have to know the

current state of the system con�guration. This

is most useful for time-sharing and parallel pro-

cessing systems. Users need not recompile their

applications due to node or communication fail-

ures, nor be concerned about the load of the var-

ious processors. Parallel applications can be ex-

ecuted on MOSIX by simply creating many pro-

cesses, just like a single-machine environment.

The operating system automatically attempts to

optimize the process allocations and balance the

load.

2.2 The system image model

The system image model of MOSIX is a NOW, in

which all the user's processes seem to run at the

user's \home" workstation. Each new process is

created at the same site(s) of its parent process,

i.e. a fork of a migrated process creates copies

of the deputy and the body. All the processes

of each user have the execution environment of

the user's home workstation. Processes that mi-

grate to other (remote) workstations use local

resources if possible, but interact with the user's

environment through the user's workstation.

2.3 Compatibility

The NOW MOSIX is compatible with BSDI's

BSD/OS Release 2.0 [11], which is based on Re-

lease 4.4BSD-Lite from the Computer Systems

Research Group at UC Berkeley. The current

implementation is for Intel's X86/Pentium based

workstations and PC's.

3 Process Migration

This section presents the process migration

scheme of the NOW MOSIX. The central theme

of this scheme is the observation that a UNIX

process can be divided to two contexts, the user

context - that can be migrated, and the sys-

tem context that is \home-site" dependent and

can not be migrated. We �rst describe these

two parts of the UNIX process, then present the

deputy, the part of a process that can not be

migrated.

3.1 The UNIX process

In MOSIX as in UNIX, a process is the basic

computational unit for the execution of a pro-

gram [12]. A UNIX process has two contexts,

the user context and the system context. The

user context contains the program code, stack

and variables of the process. The system con-

text contains description of the resources which

the process is attached to, and a stack for the

execution of system code on behalf of the pro-

cess.

The process interacts with its environment us-

ing two mechanisms, system calls and signals.

System calls enable processes to operate on re-

sources. In order to inform the process of the oc-

currence of exceptional or asynchronous events,

the system employs signals. Whenever such an

event occurs the appropriate signal is sent to the

process.

3.2 The Deputy

The main requirement for a process migration is

transparency, that is, the functional aspects of

the system's behavior should not be altered as

a result of migrating a process. Achieving this

transparency requires that the system is able to

locate the process, e.g. in order to preserve the

user's interface; and that the process is unaware

of the fact that it has been moved from one node

to another. A simple way to achieve these two

requirements is to maintain in the \home" site of

the process a structure that represents the pro-

cess and interacts with the process environment.

In MOSIX, the \home" site of the process is the

user's workstation. The structure that repre-

sents the process in that site is called the deputy.

The concept of the deputy of a process is based

on the observation that only the system context

of a process is site dependent. Generally the

idea is that the user context of a process is mi-

grateable, and since its interface to the system

context is well de�ned, it is possible to intercept

every interaction between the user and system

contexts, and forward this interaction across the

4

network.

In order to be able to migrate a process, it

was divided to two parts: the body which has

all of the user context and almost none of the

system context of the process, and the deputy

which has the rest of the system context, and no

user context. The user context and the part of

the system context that is associated with the

body are site independent. The body can, there-

fore, be migrated to any node. The deputy has

the site dependent part of the system context of

the process, hence it must remain in the home

site of the process. The two parts are connected

by a communication channel, on which interac-

tion between the two parts takes place. Figure 1

shows two processes that share a home site. One

process is unsplit (process A) and the other is a

split process (process B) that has been migrated.

Process B

(Deputy)

Process B

(Body)

Home Site

Process A

Figure 1: Unsplit, and split processes

In the execution of a process in MOSIX, loca-

tion transparency is achieved by forwarding site

dependent system call to the home site. Sys-

tem calls that are executed by the body are in-

tercepted by the remote site's kernel. If the sys-

tem call is site independent it is executed locally,

otherwise, the system call is forwarded to the

deputy. The deputy executes the system call on

behalf of the body in the home site, and sends the

result back to the body, which then continues to

execute the user's code.

The home site deputy approach o�ers a sim-

ple solution to the process location requirement.

Instead of providing the location of the process,

the deputy provides a channel to interact with

the body. The kernel at the home site informs the

deputy of asynchronous events, the deputy checks

if there is any action to be taken, and informs

the body if so. The body checks the communica-

tion channel for reports of asynchronous events

in the same locations a standard UNIX process

checks for signals. The deputy approach is also a

very appealing method to achieve a clean solu-

tion to the transparency requirement. This solu-

tion is robust, and is not a�ected even by major

modi�cations of the UNIX kernel. Some modi�-

cations, such as supporting a distributed �le sys-

tem, might even improve the solution by making

many system calls site independent. Also, this

solution seems to be portable, it relies on almost

no machine dependent features of the kernel,

and thus does not hinder its porting to di�er-

ent architectures. In fact, it does not rely much

on UNIX speci�c properties, and seems to be

exportable to other time-sharing operating sys-

tems.

Body A Body B

Deputy A Deputy B

Home Site

Figure 2: The path of data sent from process A

to process B

The deputy approach has, however, some over-

head in the execution of system calls. For exam-

ple, as Figure 2 shows, data sent from one pro-

cess to another has two hops over the network,

instead of just one hop. This implies some scal-

ing limitations due to a bottleneck at the home

site, when executing a large number of commu-

nicating processes. Additional overhead is in-

curred due to the need to hold enough state at

the home site, and to keep a dedicated commu-

nication channel.

Nevertheless, we believe that all of the above

5

problems could be solved by the development

of additional mechanisms. These mechanisms

should make some of the resources globally avail-

able, thus reducing the number of site dependent

(remote) system calls and improve the overall

performance. Given the current memory prices,

the memory requirements overhead due to the

need to keep the communication links and the

deputies is negligible. Idle deputies do not re-

quire much CPU resources, and by reducing

the number of site dependent system calls, the

deputies will be idle most of the time. Also,

the bottleneck of handling many communication

channels at the home site can be solved by the

development of migrateable sockets, that can be

migrated with one of the processes that uses the

socket.

4 Performance of the Load

Balancing Scheme

This section presents the e�ciency of the

MOSIX process migration algorithms. We ex-

ecuted a set of identical CPU-bound processes

and compared the execution times to the the-

oretical execution times of the same processes

using the optimal preemptive process migra-

tion algorithm. The execution platform is a

NOW con�guration with 16 identical Pentium

workstations that are connected by an Ether-

net. We note that in the load-balancing scheme

of MOSIX, a process is migrated only when

the di�erence between the loads of two nodes

is above the load created by one CPU bound

process. This policy di�ers from the time-slicing

policy commonly used by shared-memory multi-

computers.

Table 1 presents the results of this benchmark.

The execution time of each process was set to

300 seconds. The �rst column lists the num-

ber of processes. The second column lists the

theoretical execution times (in seconds) of these

processes, assuming no communication overhead

and a preemptive process migration when the

di�erence between the loads of two nodes is

greater than the load created by one CPU bound

process. Column three lists the measured execu-

tion times (in seconds) of the processes using the

MOSIX load balancing algorithm, and column

four the slowdown ratio (in %) between column

three and column two.

No. of Optimal MOSIX Slow-

Procs. Time Time down(%)

1 300 301.91 0.6

2 300 302.92 1.0

4 300 304.57 1.5

8 300 305.73 1.9

16 300 310.83 3.6

17 450 456.91 1.5

20 450 462.07 2.7

24 450 471.87 4.9

25 525 533.15 1.6

27 525 549.07 4.6

31 563 574.03 1.9

32 600 603.17 0.5

33 700 705.93 0.8

36 700 715.35 2.2

38 750 759.90 1.3

40 750 767.67 2.4

43 833 833.33 0.0

47 883 901.81 2.1

48 900 916.11 1.9

Table 1: Optimal vs. MOSIX load balancing

performance

From Table 1 it follows that the average slow-

down ratio of the MOSIX load balancing algo-

rithm vs. the optimal execution algorithm is

1.95%. We note that the MOSIX load balancing

scheme imposes a minimal residency (local) exe-

cution time for each new process before it can be

migrated, to prevent short-lived processes from

migration. This residency time is the main rea-

son for the di�erence between the results of col-

umn two and column three in Table 1.

5 Conclusions and Future

Plans

The NOW MOSIX has been operational for over

2 years on a cluster of 22 Pentium and several

i486 based workstations. It is used for research

and development of multicomputer systems and

parallel applications. Its unique mechanisms

provide a convenient environment for writing

6

and executing parallel programs, with minimal

burden to the application programmers.

Currently we are researching the idea of mi-

grateable sockets to overcome potential bottle-

necks of executing a large number of communi-

cating processes. We are also developing com-

petitive, on-line algorithms to improve the per-

formance of the load-balancing policy. After we

install the Myrinet LAN [4], we intend to start

several new projects that bene�t from the pool

of resources of the NOW. One project is to de-

velop amemory server that can swap portions of

a large program to idle memory in remote work-

stations. This mechanisms could bene�t from

our process migration mechanism, that is capa-

ble to page across the network. This project is

similar to the network RAM project described in

[1]. Another project is to develop a shared mem-

ory mechanism and to use it for communication

among groups of processes.

Beyond that, we intend to make the NOW

MOSIX available on the Internet, as an enhance-

ment of BSD/OS for parallel computing. For

information contact the �rst author.

References

[1] T.E. Anderson, D.E. Culler, and D.A. Pat-

terson. A Case for NOW (Networks of

Workstations). IEEE Micro, 15(1):54{64,

February 1995.

[2] A. Barak, S. Guday, and R.G. Wheeler.

The MOSIX Distributed Operating System,

Load Balancing for UNIX. In Lecture Notes

in Computer Science, Vol. 672. Springer-

Verlag, 1993.

[3] A. Barak and O. Laden. Performance of

PVM with the MOSIX Preemptive Process

Migration. Technical Report 95-08, Com-

puter Science Institute, The Hebrew Uni-

versity, March 1995.

[4] N.J. Boden, D. Cohen, R.E. Felderman,

A.K. Kulawik, C.L. Seitz, J.N.Seizovic,

and W-K. Su. Myrinet: A Gigabit-per-

Second Local Area Network. IEEE Micro,

15(1):29{36, February 1995.

[5] R. Butler and E. Lusk. User's Guide to the

p4 Programming System. Technical Report

TM-ANL-92/17, Argonne National Labora-

tory, October 1992.

[6] N. Carriero, E. Freeman, and D. Gelernter.

Adaptive Parallelism and Piranha. Com-

puter, 28(1):40{49, January 1995.

[7] J. Casas, D. Clark, R. Konuru, S. Otto,

R. Prouty, and J. Walpole. MPVM: A Mi-

gration Transparent Version of PVM. Tech-

nical Report CSE-95-002, Oregon Graduate

Institute of Science & Technology, February

1995.

[8] F. Douglis and J. Ousterhout. Transpar-

ent Process Miration: Design Alternatives

and the Sprite Implementation. Software

{ Practice and Experience, 21(8):757{785,

August 1991.

[9] A. Geist, A. Beguelin, J. Dongarra,

W. Jiang, R. Manchek, and V. Sunderam.

PVM - Parallel Virtual Machine: A User's

Guide and Tutorial for Networked Parallel

Computing. MIT Press, Cambridge, MA,

1994.

[10] G.W. Gerrity, A. Goscinski, J. Indul-

ska, W. Toomey, and W. Zhu. Rhodos-

A Testbed for Studying Design Issues in

Distributed Operating Systems. In To-

ward Network Globalization (SICON 91):

2nd International Conference on Networks,

pages 268{274, September 1991.

[11] R. Kolstad, T. Sanders, J. Polk, and

M. Karles. BSD/OS 2.0 and BSDI Inter-

net Server Release Notes. Berkeley Software

Design, Inc., Colorado Springs, CO, 1995.

[12] J. Le�er, M.K. McKusick, M.J. Karels, and

J.S. Quarterman. The Design and Imple-

mentation of the 4.3BSD UNIX Operating

System. Addison-Wesley, Reading, MA,

1989.

[13] M. Nuttall. Survey of Systems Providing

Process or Object Migration. Technical Re-

port DoC 94/10, Imperial College, London,

May 1994.

7

