
PThammer: Cross-User-Kernel-Boundary Rowhammer through Implicit Accesses

Zhi Zhang∗†‡, Yueqiang Cheng∗§, Dongxi Liu‡, Surya Nepal‡, Zhi Wang¶, and Yuval Yarom‡‖
∗ Both authors contributed equally to this work
† University of New South Wales, Australia

‡Data61, CSIRO, Australia Email: {zhi.zhang,dongxi.liu,surya.nepal}@data61.csiro.au
§Baidu Security Email:chengyueqiang@baidu.com

¶Florida State University, America Email:zwang@cs.fsu.edu
‖University of Adelaide Email: yval@cs.adelaide.edu.au

Abstract—Rowhammer is a hardware vulnerability in
DRAM memory, where repeated access to memory can induce
bit flips in neighboring memory locations. Being a hardware
vulnerability, rowhammer bypasses all of the system memory
protection, allowing adversaries to compromise the integrity
and confidentiality of data. Rowhammer attacks have shown to
enable privilege escalation, sandbox escape, and cryptographic
key disclosures.

Recently, several proposals suggest exploiting the spatial
proximity between the accessed memory location and the
location of the bit flip for a defense against rowhammer. These
all aim to deny the attacker’s permission to access memory
locations near sensitive data.

In this paper, we question the core assumption underlying
these defenses. We present PThammer, a confused-deputy at-
tack that causes accesses to memory locations that the attacker
is not allowed to access. Specifically, PThammer exploits the
address translation process of modern processors, inducing the
processor to generate frequent accesses to protected memory
locations. We implement PThammer, demonstrating that it is
a viable attack, resulting in a system compromise (e.g., kernel
privilege escalation). We further evaluate the effectiveness of
proposed software-only defenses showing that PThammer can
overcome those.

Keywords-Rowhammer, Confused-deputy Attack, Address
Translation, Privilege Escalation

I. INTRODUCTION

In 2014, Kim et al. [26] performed the first comprehensive
study of an infamous software-induced hardware fault, the
so-called rowhammer vulnerability. Specifically, frequent
accesses to the same addresses in two DRAM (Dynamic
Random Access Memory) rows (known as hammer rows)
can cause bit flips in an adjacent row (the victim row). If the
victim row contains sensitive data, such as page tables, these
bit flips can corrupt the data and compromise the security
of the system. Because the adversary does not access the
victim row, rowhammer attacks can be carried out even
when the attacker has no access to the sensitive data. Thus,
rowhammer attacks can bypass MMU-based domain isolation
both between processes and between user and kernel spaces,
even in the absence of software vulnerabilities. Rowhammer
attacks have been shown to allow privilege escalation [5],
[12], [16], [17], [45], [49], [51], [57] and to steal private
data [3], [30], [44].

…
…

𝐼

Cache/DRAM DRAM

X

only accessible to X

…

Implicit Hammer

Explicit Hammer

only accessible to E

Hammer Row

only accessible to both X and E

Hammer Row

…

E

Figure 1: Implicit and explicit hammer. All existing rowham-
mer attacks are explicit hammer, i.e. the attacker E requires
access to memory in the exploitable hammer rows. In implicit
hammer, in contrast, the attacker I exploits a benign entity
X (e.g., the processor) to implicitly hammer the exploitable
hammer rows.

One limitation of existing rowhammer attacks is that the
adversary requires access to an exploitable hammer row. (A
hammer row is exploitable if the adversary can use it for
the attack, i.e., it is adjacent to a victim row that contains
sensitive data.1) That is, as Figure 1 shows, some memory
in the hammer row should be mapped to the address space
of the attacker, who should have the permission to read that
memory. As the access to the hammer row is legitimate and
conforms to the privilege boundary enforced by MMU, we
refer to such attacks as explicit hammer.

This limitation of explicit hammer attacks underlies the
design of some proposed software-only defenses against
rowhammer [4], [6], [56]. These defenses enforce DRAM-
aware memory isolation at different granularities to deprive
attackers of access to exploitable hammer rows. As an
example, CTA [56] allocates memory for page tables in
a separate region of the DRAM, such that no row adjacent
to page tables is accessible to unprivileged users. Unlike
hardware-based defenses (e.g., [23], [31], [38], [48]), such
software-only defenses have the appeal of compatibility with
existing hardware, which allows better deployability.

In this paper, we question the assumption underlying

1In the RAMBleed attack [30], the exploitable rows are the rows that
contain the sensitive data.



proposed software-only defenses. Specifically, we ask:

Are rowhammer attacks feasible without access permission
to exploitable hammer rows?

Our contributions: In this paper, we provide a positive
answer to this question. We introduce a new class of
rowhammer attacks, called implicit hammer. As Figure 1
shows, an attacker I in implicit hammer uses a confused
deputy attack [19], to bypass the access restrictions. Instead of
explicitly accessing the exploitable hammer rows, the attacker
tricks a benign entity to implicitly hammer the exploitable
rows, eliminating the key requirement of explicit hammer.
Essentially, implicit hammer exploits built-in features of
modern hardware and/or software, such as address translation,
a system call handler, etc., where the entity is either hardware,
e.g., the processor, or software, such as system call handler.
For instance, an unprivileged attacker can invoke a system call
to cross user-kernel privilege boundary and access kernel
memory [33] implicitly. If such access frequently occurs
within DRAM, then the accessed kernel memory might be
vulnerable to rowhammer.

Carrying out a implicit hammer attack raises the following
challenges as illustrated in Figure 1. First, the attacker I
should find a hardware or software feature that implicitly
accesses the hammer rows (solid arrows). Second, the attacker
I should effectively and efficiently trigger the selected feature
to hammer the hammer rows. Third, the hammer rows (blue)
should be exploitable for a meaningful attack [6], [30].
PThammer: To demonstrate the viability of implicit
hammer, we instantiate a concrete example that is called
PThammer. Specifically, like van Schaik et al. [52], we use
the page translation mechanism of the processor as a confused
deputy. In modern mainstream operating systems, a memory
access triggers address translation. Specifically, when a
program accesses memory, the processor needs to translate
the virtual address that the program uses to a physical address.
On the Intel x86 architecture, the processor first searches the
Translation-Lookaside Buffer (TLB) for the corresponding
physical address. In a TLB miss, when the search fails, the
processor proceeds to search the paging-structure caches
that store partial address mappings of different page-table
levels [2]. Finally, if no partial translation is found, the
processor translates the address by “walking” the page tables.
In the page-table walk, page-table entries (PTEs) are retrieved
from the cache, if they are cached, or from the DRAM
memory, if not.

In PThammer, we exploit this page-table walk to perform
an implicit hammer. Theoretically, all of the levels of PTEs
can be used for implicitly hammering memory. However,
for that to happen, the attacker needs to ensure that the
corresponding entries are evicted from the TLB, the paging-
structure cache, and the data caches. At the same time, both
evicting entries from caching structures and page-table walks

take time, hence a naive implementation of the attack may not
be fast enough to induce bit flips. Thus the major challenge of
PThammer is how to exploit the page-table walk mechanism
to produce frequent enough memory accesses to exploitable
hammer rows.

To address this challenge, we exploit an interaction
between the paging-structure cache and page-table walks.
Specifically, if a partial translation for a page-table walk
exists in the cache, the processor uses the partial translation
to skip parts of the page-table walk. Thus, if we ensure
that the page-table walk only misses on the Level-1 PTE
(L1PTE), we can perform an implicit memory access to a
single L1PTE only.

For PThammer, we prepare a pool of eviction sets for the
TLB and for the cache. Each of these eviction sets allows us
to evict one set of the TLB or the cache. We then repeatedly
select a pair of memory addresses. For each of these pairs,
we repeatedly hammer the memory row that contains the
L1PTEs of the addresses. To that aim, we use these eviction
sets to evict the TLB sets that store the entries of the selected
pair of addresses, as well as the last-level cache sets that
store the L1PTEs for these addresses. We then access the
memory addresses. Because we evicted the TLB entry, the
processor needs to perform a page-table walk. Most of the
address translation is cached in the paging-structure cache.
However, the entry of the L1PTE is not cached and retrieving
it requires a DRAM access. If these L1PTEs happen to be
in exploitable hammer rows, we can expect hammering to
induce a bit flip in the victim row.

We evaluate PThammer in two system settings, when using
regular (4 KiB) pages, and with huge (2 MiB) superpages.
(As we show in Section IV, the latter facilitates the faster
generation of eviction sets.) The experimental results indicate
that PThammer is able to cross the user-kernel boundary,
allowing an unprivileged user to induce exploitable bit flips
in L1PTEs and to gain kernel privilege in either setting.
We further show that PThammer can overcome all of the
aforementioned practical defenses (Section IV). To the best
of our knowledge, we are the first to demonstrate an attack
capable of compromising the CTA defense [56]. We discuss
other possible instances of implicit hammer in Section V.

Summary of Contributions: The main contributions of
this paper are as follows:

• We demonstrate PThammer, the first implicit hammer
attack, which exploits page-table walks to void the core
assumption that underlies all of the published software-
only defenses for rowhammer. (Section III.)

• We identify and exploit an efficient page-table walk path
that only induces loads of L1PTEs from memory, builds
eviction sets to flush relevant hardware caches fast enough
to cross the user-kernel boundary in hammering L1PTEs
and gain kernel privilege. (Section III.)

• We evaluate PThammer on three different machines,



in two system settings, with and without superpages,
demonstrating privilege escalation with implicit hammer.
(Section IV.)

• We evaluate multiple proposed software-only defenses [4],
[6], [56], and show that PThammer bypasses all of them.
(Section IV-G.)

II. BACKGROUND AND RELATED WORK

In this section, we introduce the rowhammer bug and its
attacks.

A. Rowhammer Bug

Kim et al. [26] discovered that current DRAMs are
vulnerable to disturbance errors induced by charge leakage.
In particular, their experiments have shown that frequently
opening the same row (i.e., hammering the row) can cause
sufficient disturbance to a neighboring row and flip its bits
without even accessing the neighboring row. Because the
row buffer acts as a cache, another row in the same bank
is accessed to flush the row buffer after each hammering
so that the next hammering will re-open the hammered row,
leading to bit flips of its neighboring row.
Hammering techniques: Generally, there are three tech-
niques for hammering a vulnerable DRAM.

Double-sided hammering: is the most efficient technique
to induce bit flips. Two adjacent rows of a victim row are
hammered simultaneously and the adjacent rows are called
hammer rows or aggressor rows [26].

Single-sided hammering: Seaborn et al. [45] proposed
a single-sided hammering by randomly picking multiple
addresses and hammering them with the hope that such
addresses are in different rows within the same bank.

One-location hammering: one-location hammering [16]
randomly selects a single address for hammering. It exploits
the fact that advanced DRAM controllers apply a sophisti-
cated policy to optimize performance, preemptively closing
accessed rows earlier than necessary.
Key requirements: The following requirements are needed
by explicit hammer-based attacks to gain either privilege
escalation or private information.

First, the CPU cache must be either flushed or bypassed. It
can be invalidated by instructions such as clflush on x86.
In addition, conflicts in the cache can evict data from the
cache since the cache is much smaller than the main memory.
Therefore, to evict hammer rows from the cache, we can
use a crafted access pattern [18] to cause cache conflicts for
hammer rows. Also, we can bypass the cache by accessing
uncached memory.

Second, the row buffer must be cleared between consecu-
tive hammering DRAM rows. Both double-sided and single-
sided hammering explicitly perform alternate access to two
or more rows within the same bank to clear the row buffer.
One-location hammering relies on the memory controller to
clear the row buffer.

Third, existing rowhammer attacks require that at least
part of a hammer row be accessible to an attacker in order
to gain the privilege escalation or steal the private data, such
that a victim row can be compromised by hammering the
hammer row.

Fourth, either the hammer row or the victim row must
contain sensitive data objects (e.g., page tables) we target. If
the victim row hosts the data objects, an attacker can either
gain the privilege escalation or steal the private data [3], [45].
If the hammer row hosts the data objects, an attacker can
steal the private data [30].

B. Rowhammer Attacks

In order to trigger rowhammer bug, frequent and direct
memory access is a prerequisite. Thus, we classify rowham-
mer attacks into three categories based on how they flush or
bypass cache.
Instruction-based: Either clflush or clflushopt
instruction is commonly used for explicit cache flush [8],
[9], [13], [16], [26], [44], [45] ever since Kim et al. [26]
revealed the rowhammer bug. Also, Qiao et al. [42] reported
that non-temporal store instructions such as movnti and
movntdqa can be used to bypass cache and access memory
directly.
Eviction-based: Alternatively, an attacker can evict a target
address by accessing congruent memory addresses which are
mapped to the same cache set and same cache slice as the
target address [1], [5], [18], [35], [37], [52]. A large enough
set of congruent memory addresses is called an eviction set.
Our PThammer also chooses the eviction-based approach to
evict Level-1 PTEs from cache.
Uncached Memory-based: As direct memory access
(DMA) memory is uncached, past rowhammer attacks
such as Throwhammer [49] and Nethammer [32] on x86
microarchitecture and Drammer [51] on ARM platform have
leveraged DMA memory for hammering. Note that such
attacks hammer target rows that are within an attacker’s
access permission.

III. OVERVIEW

In this section, we first present the threat model and
assumptions, and then discuss PThammer in detail.

A. Threat Model and Assumptions

Similar to previous rowhammer attacks [5], [17], [42], [44],
[45], [57], we assume an unprivileged attacker that tries to
cause a bit flip in sensitive data that the attacker is not allowed
to access, let alone modify. We further assume that the
attacker does not know the location of the sensitive data, i.e.,
its physical address, and does not have access to interfaces,
such as pagemap, that convert between virtual and physical
addresses. Additionally, we assume that the software and the
operating system are working correctly and have no software
vulnerabilities. Last, like prior attacks, we assume that the



memory is vulnerable to the rowhammer attack. Pessl et
al. [41] report that many DRAM modules, including both
DDR3 and DDR4 modules, sold by mainstream DRAM
manufacturers are vulnerable.

Unlike past works, we assume that the system is protected
by software-only defenses, such as RIP-RH [4], CATT [6],
or CTA [56]. These defenses segregate the sensitive data in
memory to prevent attacker’s access to exploitable hammer
rows.

B. PThammer

PThammer is page-table-based implicit hammer attack that
leverages the address translation feature of the processor
to hammer Level-1 page tables (L1PTs) implicitly and
to flip exploitable bits in other L1PTs, thereby achieving
privilege escalation. Specifically, we observe that the address
translation feature enables implicit access to the page tables,
which are served from the DRAM memory. Based on this
observation, we build an attack primitive that hammers Level-
1 page-table entries (L1PTEs). Using this hammer primitive,
we induce bit flips in sensitive data in the kernel. In particular,
in our implementation we induce bit flips in L1PTEs, to
compromise them and gain kernel privilege.

At a high level, PThammer follows in the footsteps of
the “Malicious Management Unit” attack of van Schaik et
al. [52]. Like their attack, PThammer is a confused-deputy
attack that exploits the memory management unit to bypass
memory-segregation defenses. However, unlike van Schaik et
al., we do not care about cache noise, but have tight timing
constraints required for achieving bit flips. Thus, our focus
is on performing the attack efficiently and effectively.
Address Translation in Intel x86: Modern operating
systems isolate user processes by running each user process
in a virtual address space. The operating system and the
MMU collaborate on translating the virtual addresses that
processes use to physical addresses, which determine the
location of the data in the memory. The main data structure
used for this translation is the page tables, This is a four-level
tree where each level is indexed by 9 address bits, covering a
virtual address space of 48 bits. To translate an address, the
MMU performs a page-table walk querying the page tables
from the root of the tree down to the lower Level 1, which
contains the translation of the address.

To reduce the cost of page-table walks, the MMU also
caches prior translation results, which are then used to bypass
parts or all of the page-table walk. As Figure 2 shows, the
MMU maintains a separate caching structure for each of
the levels of the page tables. The Translation-Lookaside
Buffer (TLB) caches complete translations. The other paging-
structure caches cache partial translations [2]. Thus, when
translating a virtual address, the MMU first checks for the
corresponding physical address in the TLB. If the address is
not in the TLB, it proceeds to search the PD, which caches
location of level 1 page tables. The search proceeds up the

TLB

miss

virtual address

physical address
hit

PD
(paging structure)

PDPT
(paging structure) 

PML4
(paging structure)

miss

miss

hit

hit

hit PDPTE 
(memory)

PML4E
(memory)

CR3

miss

PDPTE
(cache)

PML4E
(cache)

PDE 
(cache)

PTE 
(cache)

PDE
(memory)

PTE
(memory)

miss

miss

miss

miss

hit

hit

hit

hit

Level-4

Level-3

Level-2

Level-1

Figure 2: Address translation in Intel x86. Red solid arrows
mark the path that PThammer uses to implicitly access a
Level-1 page-table entry (PTE) from memory. To that aim,
PThammer flushes the TLB entry and the cached PTE for the
target address, while retaining all of the higher-level partial
translations in the respective paging-structure caches.

hierarchy, until a page is found or the MMU exhausts the
paging-structure caches. The MMU then performs a page-
table walk from either the cached result or from the root of
the page-tables tree.

The page tables themselves are stored in the DRAM. When
accessing them during the page-table walk, the MMU first
searches for the required page-table entry in the data caches,
and accesses the DRAM only if no cached copy is found in
the data cache hierarchy.
An Implicit Memory Access Primitive: For PThammer
we want to exploit the address translation, and specifically
the page-table walk, to achieve implicit hammer. This raises
two requirements. First, we need to perform actual DRAM
accesses, and second we need to performs these accesses
fast enough. However, these requirements conflict, because
DRAM accesses take time and to perform these we need
to evict information from various caching structures which
require further time. Hence the challenge is to ensure that
DRAM accesses happen without spending too much time.

To address this challenge, we identify the shortest path
through address translation that results in a memory access.
This path is highlighted with solid red arrows in Figure 2.
As we can see in the diagram, to traverse this path we need
address translation to miss on the TLB, hit on the PD, and
miss on the PTE access in the cache. Thus, given a target
address whose L1PTE entry resides in an exploitable hammer
row, to induce an implicit access to the exploitable hammer
row, we need to evict the entry of the target address from
the TLB and evict L1PTE entry for the target address from
the data cache.
Finding Exploitable Target Addresses: To complete the



attack, we need to find a victim row that has a flippable bit and
contains sensitive data. We further need to implicitly hammer
the two adjacent rows. That is, we need to find two target
memory addresses whose L1PTEs are in the rows adjacent to
the victim row. We achieve this using memory spraying [7],
[45]. We allure the kernel to create a large number of L1PT
pages, filling a significant part of the memory with such
pages. In such an arrangement, a random bit flip in memory
has a non-negligible probability of changing the address of
one of the L1PTEs. Because a significant part of the memory
contains L1PT pages, there is a non-negligible probability that
modified L1PTE points to an L1PT page. This, effectively,
gives the attacker write access to an L1PT page. Modifying
this page, the attacker can get access to any desired physical
page.
Evicting the TLB entry and the L1PTE: While the Intel
architecture supports instructions for evicting entries from
the TLB and the cache, the former is restricted to privileged
code and the latter only works on data the user can access.
As such, we have to resort to causing contention on these
components to evict the entries. We now discuss how we
create eviction sets that allow effective and efficient eviction
of these entries.

C. Evicting the TLB Entry

As Gras et al. [15] have revealed there exists an explicit
mapping between a virtual page number and a multi-level
TLB set, we simply create an initial eviction set that contains
multiple (physical) pages to flush a cached virtual address
from TLB. One subset of the pages is congruent and mapped
to a same L1 dTLB set while the other is congruent and
mapped to a same L2 sTLB set if TLB applies a non-inclusive
policy.

Take one of our test machines, Lenovo T420, as an
example, both L1 dTLB and L2 sTLB have a 4-way
set-associative for every TLB set and thus 8 (physical) pages
are enough as an minimum eviction set to evict a target
virtual address from TLB. However, when we create such
an eviction set and profile the access latency of a target
virtual address, its latency remains unstable. To collect the
number of TLB misses induced by the target address, we
develop a kernel module that applies Intel Performance
Monitoring Counters (PMCs) to count TLB-miss events (i.e.,
dtlb_load_misses.miss_causes_a_walk). The
experimental results show that TLB misses in both levels do
not always occur when profiling the target address, meaning
that the target address has not been effectively evicted by
the eviction set, and thereby rendering our TLB flushes
ineffective. A possible reason is that the eviction policy on
TLB is not true Least Recently Used (LRU).
Decide a Minimal Eviction-Set Size for TLB: To this
end, we propose a working Algorithm 1 that decides a
minimal size without knowing its eviction policy. Note
that the minimal size is used to prepare a minimal TLB

Algorithm 1: Find the minimal eviction-set size for
TLB

1 Initially: target addr is a page-aligned virtual address
that needs its cached TLB entry flushed. A buffer (buf ) is
pre-allocated, size of which is decided by TLB entries.
init set is an empty set. Two unique unsigned integers
are assigned to data marker and count , respectively.

2 Function profile tlb set(set)
3 misses ← 0
4 repeat count times
5 access target addr
6 foreach page ∈ set do
7 access page[0]
8 end
9 if TLB miss when accessing target addr then

10 misses ← misses+ 1
11 end
12 end
13 return misses/count
14 target addr ← data marker
15 foreach page ∈ buf do
16 if page and target addr are in the same set then
17 page[0]← data marker
18 add page into init set .
19 end
20 end
21 threshold ← profile tlb set(init set)
22 for page ∈ init set do
23 take one page out of init set .
24 temp tlb miss ← profile tlb set(init set)
25 if temp tlb miss < threshold then
26 put page back into init set and break.
27 end
28 end
29 return the size of init set

eviction set in PThammer. Specifically, Lines 2–13 define a
function profile tlb set that reports the TLB miss probability
induced by accessing target addr . Specifically, the function
accesses all the elements in the eviction set set (Lines 6–8)
aiming to evict the cached address mapping for target addr
from the TLB. It counts the number of misses (Lines
9–11) and returns the ratio of misses to tries (Line 13).
The main code starts from a large buffer buf . In Lines
15–19, We select all those pages that are indexed to the
same TLB set as the target addr by leveraging the reverse-
engineered mapping function of Gras et al. [15]. Note that
the size of buf is determined based on the number of entries
for 4 KiB pages in the TLB. If target addr is allocated
from a huge page, the number of TLB entries that for
the page size should be considered. The selected pages
are then populated and inserted to init set (Lines 15–19).
Populate the selected pages is essential in order to trigger the
address-translation feature so tha the TLB will cache address
mappings accordingly. In Line 21, we find a threshold for
effective TLB flushes. We then start to trim the set while
retaining its effectiveness in Lines 22–28.



D. Evicting the L1PTE from the Cache

Now we are going to flush a cached Level-1 PTE (L1PTE)
that corresponds to a target virtual address. Considering that
last-level cache (LLC) is inclusive [21], we target flushing the
L1PTE from LLC such that the L1PTE will also be flushed
out from both L1 and L2 caches (we thus use cache and
LLC interchangeably in the following section). In contrast to
the TLB that is addressed by a virtual page-frame number,
the LLC is indexed by physical-address bits, the mapping
between them has also been reverse engineered [20], [22],
[36]. Based on the mapping, we decide the size of a minimal
LLC eviction set in an offline phase where physical addresses
are available. When launching PThammer, we build a one-off
pool of minimal eviction sets for every LLC set and select
one from the pool for a target L1PTE. In the following, we
talk about the above three steps in detail.
Decide a Minimal Eviction-Set Size for LLC: We extend
the aforementioned kernel module to count the event of LLC
misses (i.e., longest_lat_cache.miss) and have a
similar algorithm to Algorithm 1 to decide the minimal size
for an LLC eviction set, namely, prepare a large enough
eviction set congruent as a target virtual address and gain
a threshold of LLC-miss number induced by accessing the
target address, remove memory lines randomly from the set
one by one and verify whether currently induced LLC-miss
number is less than the threshold. If yes, a minimal size is
determined. Also, this algorithm is performed in an offline
phase long before PThammer is launched.

Although the size of eviction-set is determined ahead
of time, PThammer in our threat model cannot know the
mapping between a virtual and a physical address, making it
challenging to prepare an eviction set for any target virtual
address during its execution. Also, PThammer cannot obtain
the L1PTE’s physical address, and thus it is difficult to learn
the L1PTE’s exact location (e.g., cache set and cache slice)
in LLC. To address the above two problems, PThammer
at the beginning prepares a complete pool of eviction sets,
which is used to flush any target data object including the
L1PTE. It then selects an eviction set from the pool to evict
a target L1PTE without knowing the L1PTE’s cache location.
Note that preparing the eviction pool is a one-off cost and
PThammer only need to repeatedly select eviction sets from
the pool when hammering L1PTEs.
Prepare a Complete Pool of LLC Eviction Sets: The
pool has a large enough number of eviction sets and each is
used to flush a memory line from a specific cache set within
a cache slice in LLC. The size of each eviction set is the
pre-determined minimum size. We implement the preparation
based on previous works [14], [35]. Both works rely on the
observation that a program can determine whether a target
line is cached or not by profiling its access latency. If a
candidate set of memory lines is its eviction set, then the
target line’s access latency is above a time threshold after

Algorithm 2: Select a minimal LLC eviction set
1 Initially: a virtual page-aligned address (target addr ) is

allocated and needs its L1PTE cache-line flushed. A
complete pool of individual eviction sets (eviction sets).
l1pte offset is decided by target addr . A unique
unsigned number is assigned to count and a set
(latency set is initialized to empty). max latency is
initialized to 0 and indicates the maximum latency
induced by accessing target addr . max set represents
the eviction set used for the L1PTE cache flush.

2 Function profile evict set(set , target)
3 repeat count times
4 foreach memory line ∈ set do
5 access memory line .
6 end
7 flush a target TLB entry.
8 latency is decided by accessing target .
9 add latency to latency set

10 end
11 return the median of latency set
12 foreach set ∈ eviction sets do
13 obtain page offset from first memory line in set .
14 if page offset == l1pte offset then
15 latency ← profile evict set(set , target addr).
16 if max latency < latency then
17 max latency ← latency .
18 max set ← set .
19 end
20 end
21 end
22 return max set

iterating all the memory lines within the candidate set.
Specifically, if a target system enables superpags, a virtual

address and its corresponding physical address have the same
least significant 21 bits, indicating that if we know a virtual
address from a pre-allocated super page, then its physical
address bits 0–20 are leaked and thus we know the cache set
index that the virtual address maps to [35]. The only unsolved
is the cache slice index. Based on a past algorithm [35], we
allocate a large enough memory buffer (e.g., twice the size
of LLC), select memory lines from the buffer that have the
same cache-set index and group them into different eviction
sets, each for one cache slice.

If superpages are disabled, then only the least significant
12 bits (i.e., 4 KiB-page offset) is shared between virtual and
physical addresses and consequently we know bits 6–11 of
the cache-set index. As such, we utilize another previous
work [14] to group potentially congruent memory lines into
a complete pool of individual eviction sets. Compared to the
above grouping operation, this grouping process is relatively
slower, since there are many more memory lines sharing the
same partial cache-set bits rather than complete bits.
Select a Target LLC Eviction Set: Based on the pool
preparation, we develop an Algorithm 2 to select an eviction
set from the pool and evict a L1PTE corresponding to a
target address.



Machine Architecture CPU DRAM
Model TLB Assoc. LLC Assoc. & Size

Lenovo T420 SandyBridge i5-2540M 4-way L1d, 4-way L2s 12-way, 3 MiB 8 GiB Samsung DDR3
Lenovo X230 IvyBridge i5-3230M 4-way L1d, 4-way L2s 12-way, 3 MiB 8 GiB Samsung DDR3
Dell E6420 SandyBridge i7-2640M 4-way L1d, 4-way L2s 16-way, 4 MiB 8 GiB Samsung DDR3

Table I: System Configurations.

In Line 12, we enumerate all the eviction sets in the pool
and collect those sets that have the same page offset as the
L1PTE in Line 14. This collection policy is based on an
interesting property of the cache. Oren et al. [40] report
that if there are two different physical memory pages that
their first memory lines are mapped to the same cache set
of LLC, then the rest memory lines of the two pages also
share (different) cache sets. This means if we request many
(physical) memory lines that have the same page offset as
the L1PTE and access each memory line, then we flush the
L1PTE from LLC.

Lines 15–19 select the target eviction set from the collected
ones. In Line 15, we profile every collected eviction set
through a predefined function in Lines 2–11. Within this
function, we perform access to each memory line of one
eviction set, which will implicitly flush the L1PTE from LLC
if the eviction set is congruent with the L1PTE, and then flush
the target TLB entry related to target addr to make sure the
subsequent address translation will access the L1PTE. At last,
we measure the latency induced by accessing target addr .
Based on this function, we find the targeted eviction set that
causes the maximum latency in Lines 17–18, as fetching
the L1PTE from DRAM is time-consuming when accessing
target addr triggers the address translation. Give that LLC
is shared between page-table entries and user data, we must
carefully set target addr to page-aligned (normally 4 KiB-
aligned) but not superpage-aligned (normally 2 MiB-aligned),
that is, its page offset is 0 and different from l1pte offset ,
which is the page offset of L1PTE. As such, they are placed
into different cache sets and the selected eviction set is
ensured to flush the target L1PTE rather than target addr .

IV. EVALUATION

We now turn evaluate PThammer on three different
hardware, summarized in Table I, all running Ubuntu 16.04.
We test PThammer both in the default memory configuration
and with huge memory pages (superpages) enabled.

We first decide the minimal eviction-set size to effectively
and efficiently flush the TLB and the last-level cache (LLC)
at an offline stage. Based on the minimal size, we prepare a
minimal TLB or LLC eviction sets from a complete pool of
TLB or LLC eviction sets. We then evaluate the performance
of the complete attack, describe how it achieves privilege
escalation, and explore its effectiveness against proposed
defenses.

A. Eviction-Set Size

TLB: We use Algorithm 1 (Section III-C) to determine the
minimal eviction set size that consistently evicts an entry from
the TLB. We first use the mapping of Gras et al. [15] obtain
an initial eviction set twice bigger than the total associativity
of the TLBs, i.e., with 4-way L1dTLB and L2sTLB the initial
eviction set has 16 elements. We then measure the eviction
success while reducing the eviction set size. The results,
presented in Figure 3, show that in all of our test machines,
eviction sets of 12 or more entries achieve consistently high
eviction rates, while for smaller eviction sets the success
drops significantly.
LLC: The associativity of the LLC varies between our
test machines, with the Lenovo machines having 12-way
LLCs and the Dell machine using a 16-way LLC. We use
the algorithm of Liu et al. [35] to find conflicting memory
addresses and select initial eviction sets twice larger than a
cache set, i.e., 24 entries for the Lenovos and 32 entries for
the Dell. Figure 4 shows the measured eviction rate while
removing elements from the eviction set. We see that when
the eviction set is bigger than the LLC set, the eviction
rate is consistently above 94%. However, the eviction rate
starts dropping when the eviction set size matches the cache
associativity. Further reducing the eviction set size results in
a significant drop in the eviction rate. Thus, we choose an
eviction set one larger than the cache associativity, with 13
entries on the Lenovo machines and 17 on the Dell machine.
We note that Gruss et al. [18] explore the effects of the order
of access to the eviction set on the eviction rate. We do not
use their results, as we find that sequential access produces
sufficiently high eviction rates.

B. Eviction Pool Preparation

For TLB, we allocate a complete pool of 4 KiB pages eight
times as many as required to cover both the L1dTLB and
the L2sTLB entries for 4 KiB-page. We partition these pages
based on the TLB sets they map to. As Table II shows, this
TLB pool preparation completes within a few milliseconds
on each of our test machines.

For the LLC, we allocate a buffer twice the LLC size and
use the algorithm of Liu et al. [35] to partition it to eviction
sets. Because the mapping of virtual to physical addresses
preserves more bits when using superpages, the pool prepa-
ration is significantly faster when we use superpages. The
complexity of the algorithm we use is cubic with the size



11 12 13 14 15 16
TLB Eviction Set (Page #)

20

30

40

50

60

70

80

90

100

M
iss

 R
at

e 
(P

er
ce

nt
ag

e 
%

)

Lenovo T420 Lenovo X230 Dell E6420

Figure 3: TLB miss rate for eviction set size. The TLB miss
rate drops when using an eviction set of size below 12.

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
LLC Eviction Set (Memory Line #)

50

60

70

80

90

100

M
iss

 R
at

e 
(P

er
ce

nt
ag

e 
%

)

Lenovo T420 Lenovo X230 Dell E6420

Figure 4: LLC miss rate for eviction set size. When the size
of the eviction set is larger than the LLC associativity, the
miss rate is consistently above 95%.

Machine Page Size Preparation Set Selection Hammer Check Time to
TLB LLC TLB LLC Time Time Bit Flip

Lenovo T420 superpage 11 ms 0.3 m 1µs 285 ms 285 ms 4.4 s 10 m
regular 11 ms 18.0 m 1µs 283 ms 287 ms 4.4 s 10 m

Lenovo X230 superpage 7 ms 0.3 m 1µs 282 ms 280 ms 4.4 s 15 m
regular 7 ms 19.0 m 1µs 288 ms 283 ms 4.2 s 15 m

Dell E6420 superpage 7 ms 0.3 m 1µs 258 ms 389 ms 4.1 s 14 m
regular 7 ms 38.0 m 1µs 270 ms 392 ms 4.0 s 12 m

Table II: Average time for PThammer (five runs). First bit flip observed within 15 minutes of double-sided hammering. Pool
preparation is a one-off cost, accrued only once at the beginning of the attack. Hammer and check times are the time it takes
to perform a hammering attempt and to check for bit flips, respectively.

of the LLC. Hence the algorithm is significantly slower on
the Dell machine, which features a larger cache. As this is
a one-off cost, we have not experimented with potentially
more efficient algorithms for finding cache sets, such as the
Vila et al. [53].

C. LLC Eviction-Set Selection

TLB eviction-set selection relies on a complete reverse-
engineered mapping between virtual addresses and TLB
sets [15], and thus it introduces no false positives, meaning
that PThammer always selects a matching eviction set for
TLB.

However, selecting an LLC eviction set is based on
profiling the access latency to a target address, described in
Algorithm 2. As such, the profiled latency is not completely
precise due to noise, e.g., due to interrupts, and may introduce
false positives to the selection. To test the success of the
algorithm, we develop a kernel module that obtains the
physical address of each L1PTE, which we use to verify that
the L1PTE is congruent with the eviction-set selected by
Algorithm 2 The experimental results show that the eviction-
set selection for the LLC has no more than 6% false positives
in each system setting on each test machine. The kernel
module of SGX-Step [50] can also be used to find the
physical address of the L1PTE. We note that this kernel

module is not required for the attack and is only used for
evaluating the success of the eviction set selection.

Note that selecting a TLB-based eviction-set takes about 1
microsecond while the LLC eviction-set selection takes about
290 milliseconds. Both are quite efficient, indicating that we
can quickly start double-sided hammering, as mentioned
below.

D. Double-sided Hammering

To efficiently induce bit flips, we should hammer two
L1PTEs that are one row apart within the same bank, similar
to the way how double-sided hammering works. As such, we
expect to select appropriate user virtual addresses such that
their relevant L1PTEs meet the above requirement. However,
the physical address of each L1PTE is required to know
its location (i.e., DIMM, rank, bank, and row) in DRAM
given that a physical address to a DRAM location has been
reverse-engineering [41], [57]. As we have no permission to
access the kernel space, we cannot know the physical address
of an L1PTE, making it challenging to conduct double-sided
hammering.

To address this problem, we are inspired by previous
works [7], [30], [45], [51] and follow a two-steps approach.
In the first step, we select a pair of addresses whose respective
L1PTEs are highly likely to be one row apart. As the DRAM



300 400 500 600 700 800 900 1000110012001300140015001600
Time (Cycles) Per Doubld-sided Hammering

0

500

1000

1500

2000

Ti
m

e 
(S

ec
on

ds
) U

nt
il 

Fi
rs

t B
it 

Fl
ip

Lenovo T420 Lenovo X230 Dell E6420

Figure 5: As the time to perform an iteration of double-sided
hammering increases, the time to find the first bit flip also
grows. When hammering iterations are longer than around
1 600 cycles, no bit flip is observed within two hours.

row size per row index, denoted by RowsSize, is known
(being 256 KiB on our test machines), we manipulate the
buddy allocator to allocate a large enough number of Level-
1 page tables. (We use the mmap system call to allocate
2 GiB of Level-1 page-tables out of the total 8 GiB DRAM,
8 K times as large as RowsSize .) Because the Linux buddy
allocator tends to allocate consecutive physical memory
pages, many of the allocated L1PTs are in consecutive
pages. We now choose two virtual addresses that differ by
2 · RowsSize · 512 bytes, or 256 MiB on our test machines.
Each level-1 page table (L1PT) page contains 512 entries,
each mapping 4 KiB of virtual addresses. Hence, assuming
mostly consecutive page-table allocation, the L1PTEs of the
addresses we select are highly likely to be one DRAM rows
apart.

In the second step we verify that the L1PTE pairs we
found in the first step are in the same bank. For this, we
rely on the timing difference between accessing memory
locations that are in the same bank vs. memory locations in
different banks. Specifically, accessing memory locations in
different rows of the same memory bank triggers a row-buffer
conflict [39], which slows accesses down. Thus, for each
address pair, we repeatedly perform TLB and LLC flushes
to evict their L1PTEs from the TLB and the cache. We then
measure the access latency to the addresses in the pair. If the
L1PTEs are in the same DRAM bank, resolving the physical
addresses will be slower than if the L1PTEs are in different
banks.

Experimentally evaluating the performance of this method,
we find that over 95% of the address pairs that show slow
access are in the same bank. Furthermore, we find that of
these address pairs whose L1PTEs are in the same bank,
90% are indeed one row apart.

E. PThammer Performance

As in Section III-B, the time cost per double-sided
hammering must be no greater than the maximum latency
allowed to induce bit flips. We firstly identify the maximum
time cost that permits a bit flip on each machine through a
published double-sided hammering tool2.

The tool embeds two clflush instructions inside each
round of double-sided hammering. To increase the time cost
for each round of hammering, we add a certain number
of NOP instructions preceding the clflush instructions in
each run of the tool. We incrementally add the NOP number
so that the time cost per hammering will grow. The time
cost for the first bit flip to occur on each machine is shown
in Figure 5. As shown in the Figure, the time cost until the
first bit-flip increases with an increasing cost per hammering.
When the time cost per hammering is more than 1500 cycles
on both Lenovo machines while 1600 on the Dell machine,
not a single bit flip is observed within 2 hours. As such,
1500 and 1600 are the maximum cost permitted to flip bits
for the Lenovo and Dell machines, respectively.

We then check whether the time taken by each round
of double-sided hammering is no higher than the permitted
cost. For each double-sided hammering, it requires accesses
to two user virtual addresses as well as their respective
TLB eviction set (i.e., 24 virtual addresses in total on each
machine) and LLC eviction set (i.e., 26 virtual addresses on
each Lenovo machine and 34 virtual addresses on the Dell
machine). In each system setting, we conduct double-sided
hammering for 50 rounds on each machine and measure the
time that each hammering takes. As Figure 6a shows, the
vast majority of double-sided hammering attempts in both
Lenovo machines are in the range of 600–900 cycles. (100%
are below 1000 cycles.) For the Dell machine, the range is
900–1400 cycles. When using superpages (Figure 6b), 94%
of the double-sided hammering attempts take 400–900 cycles
in both Lenovo machines with an upper bound of 1100 cycles.
On the Dell machine, the range is 900–1400 cycles. Clearly,
the time taken per double-sided hammering is well below the
maximum cost in Figure 5, making PThammer fast enough
to induce bit flips. Also, the low time cost implies that most
address accesses within each hammering are served by CPU
caches rather than DRAM.

F. Kernel Privilege Escalation

Experimenting in both system settings, we find that
PThammer can cause a bit flip within 15 minutes or less.
(Average of five tests.) We can identify bit flips in L1PTE
by comparing the contents of the memory [7].

Specifically, we use the mmap system call to create a large
number of virtual addresses that all map to the same physical
frame at user space. (See Figure 7.) In practice, due to the
limitation of the number of mmaped regions, we have several

2https://github.com/google/rowhammer-test

https://github.com/google/rowhammer-test


0 10 20 30 40 50
Hammer Number (#)

400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600

Ti
m

e 
(C

yc
le

s)
 P

er
 H

am
m

er

Lenovo T420 Lenovo X230 Dell E6420

(a) Double-sided hammering in the default memory setting.

0 10 20 30 40 50
Hammer Number (#)

400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600

Ti
m

e 
(C

yc
le

s)
 P

er
 H

am
m

er

Lenovo T420 Lenovo X230 Dell E6420

(b) Double-sided hammering with superpages.

Figure 6: In both system settings, the time-cost range on each machine is well below the maximum time cost (see Figure 5)
that allows bit flips.

User
Page

Victim L1PT
• • • •

L1PT (target)

• • • •

Figure 7: Kernel privilege escalation. Implicitly hammering
L1PTEs flips a bit in a victim L1PTE, resulting in a user page
map to a target L1PT page. The attacker can now modify the
target L1PT page and achieve access to any desired physical
memory page.

user pages, each mapped multiple times. Such allocations
create a large number of Level-1 Page Table (L1PT) pages.

We then use PThammer to implicitly hammer such L1PT
pages. After hammering two L1PTEs each time, we check
the contents of the pages in the attacker’s address space.
In the case of a successful hammering, one or more of the
L1PTEs in the victim L1PT page will experience a bit flip
that will change the physical frame it points to. We identify
such success by comparing the contents of the pages in the
address space against the known contents of the user pages.

As depicted in Figure 7, because there are many L1PT
pages in our address space, there is some non-negligent
probability that the frame the modified L1PTE points to
contains another L1PT. We identify this case by checking for
known patterns in L1PT pages, and we verify this case by
modifying the contents of the page and checking for further
changes in our address space mappings.

After we gain access to an L1PT page, we modify the
part of the address space that this L1PT maps to point to

any desired physical memory frame, achieving complete
control of the system. We note that CTA [56] protects against
getting access to L1PTs. See Section IV-G3 below for kernel
privilege escalation with CTA.

G. Software-only Rowhammer Defenses

We now evaluate three existing software-only defenses
CATT [6], RIP-RH [4], and CTA [56] against PThammer.

1) CATT: CATT (CAn’t-Touch-This) [6] aims to protect
the kernel from rowhammer attacks. It partitions each DRAM
bank into kernel and user parts, reserving a small number of
rows as a buffer between the parts. Because the user only has
access to user pages, CATT deprives the attacker’s access
to exploitable hammer rows. The rows that the attacker is
allowed to access are never adjacent to rows that contain
kernel data.

Because the page tables are kernel data, they are stored
in the kernel part of the memory. Thus, PThammer can
exploit the page-table walk to implicitly hammer rows in the
kernel part of the memory. Furthermore, because the page
tables, which we hammer, can only be in a restricted part
of the memory, selecting L1PTEs at random has a higher
probability of picking a pair at the two sides of a victim row
than if L1PTEs spread all over the memory, increasing the
chance of a successful double-hammer. Furthermore, because
the victim row is in the same limited space, it has a higher
probability of containing an L1 page table, increasing the
likelihood of a successful attack.

We could not obtain CATT for evaluation. Instead, we
use a technique due to Cheng et al. [7] for increasing the
concentration of L1PTEs in memory. Specifically, we exploit
the buddy allocator in the Linux kernel by first exhausting all
small blocks of memory and then starting to allocate L1PTEs.
We then run PThammer, achieving privilege escalation within
three bit flips.



2) RIP-RH: RIP-RH [4] aims to isolate users by seg-
regating their memory into dedicated areas in the DRAM,
preventing cross-user rowhammer attacks. As RIP-RH does
not protect the kernel, our attack trivially applies to it. The
code for RIP-RH is not available, but we suspect that isolating
user processes means that the kernel is concentrated in a
small part of the memory. Thus, we suspect that, like CATT,
RIP-RH increases the efficiency of PThammer.

3) CTA: CTA (Cell-Type-Aware) [56] employs a multi-
layer approach for protecting L1PTEs from rowhammer
attacks. In the first layer, similar to CATT, CTA segregates
the L1PTs into a dedicated region of memory. A further
layer of defense ensures that even in the case of a bit flip
in an L1PTE the user will not get unfettered access to an
L1PT page. To achieve that, CTA places the L1PTEs in the
higher addresses of the physical memory, and verifies that
the rows it uses for the L1PTEs only contain true cells [26],
i.e., memory cells that might change from 1 to 0 but not
vice versa. This property ensures that even if a bit flips the
new address will be lower than the original address. Because
the physical addresses of the L1PTs are all higher than all
of the addresses of user pages, a bit flip cannot change an
L1PTE from pointing to a user page to pointing to an L1PT.

Clearly, PThammer can overcome the first layer of defense
in CTA. However, the second layer presents a challenge.
To overcome this, we note that CTA only protects the
L1PTEs, but does not protect any of the other kernel
pages. We therefore suggest adopting a prior attack on user
credentials [7]. Specifically, we create a large number of
processes, “sprinkling” the kernel memory with struct
cred entries. We then deploy PThammer to flip a bit in
an L1PTE. As discussed, such a flip will not allow access
to a page-table page. However, with some non-negligible
probability, it will give us access to a page that contains the
struct cred of one of the processes we created. We can
then change the credentials and achieve privilege escalation.

We could not obtain the CTA source code for evaluating
our attack. Instead, we simulate the attack on an undefended
kernel. We created 32 000 processes and performed a PTham-
mer attack. When a bit flip occurs in a PTE, we search
for struct cred in the page we gained access to. We
recognize these pages by looking for the known user ids and
group ids stored in the struct cred. In our experiments,
we gain root privileges after seven bit flips.

V. DISCUSSION

PThammer and CATTmew: CATTmew [7] targets a
limitation of CATT, that fails to properly isolate user-
accessible pages within the kernel. Thus, unlike PThammer,
CATTmew does not defeat CTA, which does not share the
same limitation. Moreover, like prior explicit-hammer attacks,
CATTmew requires access permission to exploitable hammer
rows. PThammer, in contrast, is an implicit-hammer attack
and does not require such access permission.

Limitation: PThammer does not overcome the Ze-
bRAM [29] defense. ZebRAM targets virtualized environ-
ments, but has a high performance overhead [56], limiting
its practicality. Moreover, ZebRAM relies on the unproven
assumption that hammering only affects neighboring rows.
Thus, it ignores the possibility of DRAM row remapping [56]
or of flips happening further away from the hammered
rows [25].

Other Possible Instances of Implicit Hammer: Besides
PThammer, there might also exist other instances of implicit
hammer that leverage other built-in features of modern
hardware/software. Particularly, the features that focus on
functionality and performance may become potential can-
didates. For the hardware, we discuss two popular CPU
features. Specifically, out-of-order and speculative execution
are two optimization features that allow parallel execution
of multiple instructions to make use of instruction cycles
efficient. As such, an unprivileged attacker can leverage
such hardware features to bypass the user-kernel privilege
boundary and access kernel memory [28], [33]. Kiriansky
et al. [27] hypothesize that speculative execution might be
used to mount a rowhammer attack, but they didn’t have a
further exploration.

As for software, we identify some OS kernel features that
may be exploitable for implicit hammer. By invoking a
system call handler, a user indirectly accesses the kernel
memory. Konoth et al. [29] attempted performing a syscall-
based rowhammer attack but didn’t succeed even in an
experimental attack scenario (i.e., with kernel privilege to
flush target addresses) because that their hammering was
inefficient. A network I/O mechanism is also a programmatic
OS feature that serves requests from the network. Particularly,
the network interface card (NIC) throws an exception to notify
the kernel of each network packet NIC receives. Within the
exception handler, the kernel will access kernel memory.
Thus, a remote user invokes this feature to access kernel
memory.

As a result, an attacker needs not only implicit but also
frequent DRAM accesses to target addresses.

Hardware Variations: Modern Intel processors support non-
inclusive caches. Such caches are known to limit cache-based
side channel attacks, such as Flush+Reload [59] and Prime+
Probe [35]. Because in our attack we only evict data that
belongs to us, we do not expect this data to be in other cores.
Hence, evicting it from the LLC will force future memory
accesses even when the LLC is non-inclusive. Moreover, these
non-inclusive caches are vulnerable to directory attacks [58],
which we could use for PThammer.

As Section IV-E discusses, PThammer can be slowed down
substantially, while still allowing hammering. Consequently,
we believe that PThammer will be effective in machines
that require somewhat longer time for eviction, e.g., due to
associative TLB or larger associativity in the LLC. Cache



designs that aim to prevent the creation of eviction sets, such
as CEASER [43] or ScatterCache [54], or that randomize
the TLB [11] can prevent PThammer. To the best of our
knowledge, no mainstream processor implements such an
approach.

We have only experimented with DDR3. Recent
works [13], [25] show that DDR4 is more vulnerable than
DDR3, significantly reducing the required number of accesses
to the aggressor rows. Frigo et al. [13] further show how to
bypass the Target Row Refresh (TRR) rowhammer defense.
Consequently, we believe that PThammer is applicable to
DDR4 memory as well.
Mitigations: Existing hardware schemes against the rowham-
mer attacks have two categories, counter-based Row Acti-
vation [23], [24], [31], [38], [46], [47] and probabilistic
protection solutions [26], [48]. The first records the number
of ACT commands that are sent to the same rows and starts
refreshing adjacent rows when the ACT number exceeds
a threshold. The other category probabilistically refreshes
adjacent rows of activated rows. However, they require
new hardware designs and thus cannot be backported to
legacy systems. Also note that Target Row Refresh (TRR), a
common counter-based rowhammer countermeasure has been
shown to be insufficient [13]. Thus it is not clear whether
counter-based solutions can prevent rowhammer attacks.

Also, there are detection-based software approaches. One
is performance-counter based such as Anvil [1] and in-kernel
Rowhammer defense [10]. They monitor the cache miss rate
to detect an ongoing rowhammer attack. We note that Anvil
compares the load addresses to detect same-row accesses, and
will have to be extended to also check the L1PTE addresses
to detect PThammer. The other approach is RADAR [60] that
leverages specific electromagnetic signals. RADAR observes
that rowhammer attacks exhibit recognizable hammering-
correlated sideband patterns in the spectrum of the DRAM
clock signal. Both detection approaches require actions for
preventing hammering whenever suspicious DRAM accesses
occur, resulting in substantial performance overhead [31].

Besides, PThammer is a kind of eviction-based cache and
TLB attacks. It exploits the fact that cache and TLB are shared
between sensitive data and crafted user data. Existing cache
and TLB defenses such as CATalyst [34], ScatterCache [55]
and Secure TLBs [11] can mitigate PThammer by partitioning
or randomizing either the cache or the TLB.

Finally, as PThammer relies on memory spraying, monitor-
ing the virtual address space can detect PThammer. It may be
possible to use PThammer with a smaller memory signature,
at an increased complexity for finding an exploitable bit flip.
This increases the risk of detection through monitoring for
sporadic system errors.

VI. CONCLUSION

In this paper, we first observed a critical condition
required by existing rowhammer exploits to gain the privilege

escalation or steal the private data. We then proposed a new
class of rowhammer attacks, called implicit hammer, that
crosses privilege boundary and thus eschews the condition.

On top of that, we created a practical instance of implicit
hammer, called PThammer that could cross the user-kernel
boundary and induce an exploitable bit flip in one Level-1
page table entry to gain kernel privilege. The experimental
results on three test machines showed that the first cross-
boundary bit flip occurred within 15 minutes of double-sided
hammering. We also evaluated three DRAM-aware software-
only defenses against PThammer and showed that it can
bypass them.

ACKNOWLEDGMENT

This project was supported by an Australian Research
Council Discovery Early Career Researcher Award (project
number: DE200101577) and by a gift from Intel.

REFERENCES

[1] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao,
Reetuparna Das, Matthew Hicks, Yossi Oren, and Todd Austin.
ANVIL: Software-based protection against next-generation
rowhammer attacks. In Architectural Support for Programming
Languages and Operating Systems, pages 743–755, 2016.

[2] Thomas W. Barr, Alan L. Cox, and Scott Rixner. Translation
caching: skip, don’t walk (the page table). ACM SIGARCH
Computer Architecture News, pages 48–59, 2010.

[3] Sarani Bhattacharya and Debdeep Mukhopadhyay. Curious
case of rowhammer: flipping secret exponent bits using timing
analysis. In Cryptographic Hardware and Embedded Systems,
pages 602–624, 2016.

[4] Carsten Bock, Ferdinand Brasser, David Gens, Christopher
Liebchen, and Ahamd-Reza Sadeghi. RIP-RH: Preventing
rowhammer-based inter-process attacks. In Asia Conference
on Computer and Communications Security, pages 561–572,
2019.

[5] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Dedup est machina: memory deduplication as an
advanced exploitation vector. In IEEE Symposium on Security
and Privacy, pages 987–1004, 2016.

[6] Ferdinand Brasser, Lucas Davi, David Gens, Christopher
Liebchen, and Ahmad-Reza Sadeghi. CAn’t Touch This:
Software-only mitigation against rowhammer attacks targeting
kernel memory. In USENIX Security Symposium, 2017.

[7] Yueqiang Cheng, Zhi Zhang, Surya Nepal, and Zhi Wang.
CATTmew: Defeating software-only physical kernel isolation.
IEEE Transactions on Dependable and Secure Computing,
2019.

[8] Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai,
Stefan Saroiu, Alec Wolman, and Onur Mutlu. Are we
susceptible to rowhammer? an end-to-end methodology for
cloud providers. In IEEE Symposium on Security and Privacy,
May 2020.



[9] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and
Herbert Bos. Exploiting correcting codes: on the effectiveness
of ECC memory against rowhammer attacks. In IEEE
Symposium on Security and Privacy, pages 55–71, 2019.

[10] Jonathan Corbet. Defending against rowhammer in the kernel.
https://lwn.net/Articles/704920/, October 2016.

[11] Shuwen Deng, Wenjie Xiong, and Jakub Szefer. Secure TLBs.
In International Symposium on Computer Architecture, pages
346–259, 2019.

[12] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. Grand pwning unit: accelerating microarchitectural
attacks with the GPU. In IEEE Symposium on Security and
Privacy, 2018.

[13] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor
van der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos,
and Kaveh Razavi. TRRespass: Exploiting the many sides
of target row refresh. In IEEE Symposium on Security and
Privacy, May 2020.

[14] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval
Yarom. Drive-by key-extraction cache attacks from portable
code. In Applied Cryptography and Network Security, pages
83–102, 2018.

[15] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
Translation leak-aside buffer: Defeating cache side-channel
protections with TLB attacks. In USENIX Security Symposium,
pages 955–972, 2018.

[16] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin,
Jonas Juffinger, Sioli O’Connell, Wolfgang Schoechl, and
Yuval Yarom. Another flip in the wall of rowhammer defenses.
In IEEE Symposium on Security and Privacy, pages 245–261,
2018.

[17] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
Rowhammer.js: A remote software-induced fault attack in
JavaScript. In Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 300–321, 2016.

[18] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
Program for testing for the DRAM rowhammer problem using
eviction. https://github.com/IAIK/rowhammerjs, May 2017.

[19] Norman Hardy. The confused deputy (or why capabilities
might have been invented). Operating Systems Review,
22(4):36–38, 1988.

[20] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical
timing side channel attacks against kernel space ASLR. In
IEEE Symposium on Security and Privacy, pages 191–205,
2013.

[21] Intel, Inc. Intel 64 and IA-32 architectures optimization
reference manual. September 2014.

[22] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Sys-
tematic reverse engineering of cache slice selection in Intel
processors. In Euromicro Conference on Digital System Design,
pages 629–636, 2015.

[23] JEDEC Solid State Technology Association. Low power
double data rate 4 (LPDDR4). https://www.jedec.org/standards-
documents/docs/jesd209-4b, 2015.

[24] Dae-Hyun Kim, Prashant J Nair, and Moinuddin K Qureshi.
Architectural support for mitigating row hammering in dram
memories. IEEE Computer Architecture Letters, 14(1):9–12,
2014.

[25] Jeremie S. Kim, Minesh Patel, A. Giray Yağlıkçı, Hasan
Hassan, Roknoddin Azizi, Lois Orosa, and Onur Mutlu.
Revisiting rowhammer: An experimental analysis of modern
dram devices and mitigation techniques. In International
Symposium on Computer Architecture, 2020.

[26] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye
Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur
Mutlu. Flipping bits in memory without accessing them:
an experimental study of DRAM disturbance errors. ACM
SIGARCH Computer Architecture News, 42:361–372, 2014.

[27] Vladimir Kiriansky and Carl Waldspurger. Speculative
buffer overflows: Attacks and defenses. arXiv preprint
arXiv:1807.03757, 2018.

[28] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan
Mangard, Thomas Prescher, Michael Schwarz, and Yuval
Yarom. Spectre attacks: Exploiting speculative execution.
In IEEE Symposium on Security and Privacy, 2019.

[29] Radhesh Krishnan Konoth, Marco Oliverio, Andrei Tatar,
Dennis Andriesse, Herbert Bos, Cristiano Giuffrida, and Kaveh
Razavi. ZebRAM: comprehensive and compatible software
protection against rowhammer attacks. In Operating Systems
Design and Implementation, pages 697–710, 2018.

[30] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval
Yarom. RAMBleed: Reading bits in memory without accessing
them. In IEEE Symposium on Security and Privacy, 2020.

[31] Eojin Lee, Ingab Kang, Sukhan Lee, G Edward Suh, and
Jung Ho Ahn. TWiCe: preventing row-hammering by exploit-
ing time window counters. In International Symposium on
Computer Architecture, pages 385–396, 2019.

[32] Moritz Lipp, Misiker Tadesse Aga, Michael Schwarz, Daniel
Gruss, Clémentine Maurice, Lukas Raab, and Lukas Lamster.
Nethammer: Inducing rowhammer faults through network
requests. arXiv preprint arXiv:1805.04956, 2018.

[33] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. Meltdown: Reading kernel memory from user
space. In USENIX Security Symposium, 2018.

[34] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos
Rozas, Gernot Heiser, and Ruby B. Lee. CATalyst: defeating
last-level cache side channel attacks in cloud computing. In
High Performance Computer Architecture, pages 406–418,
2016.

[35] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B. Lee. Last-level cache side-channel attacks are
practical. In IEEE Symposium on Security and Privacy, pages
605–622, 2015.

https://lwn.net/Articles/704920/
https://github.com/IAIK/rowhammerjs
https://www.jedec.org/standards-documents/docs/jesd209-4b
https://www.jedec.org/standards-documents/docs/jesd209-4b


[36] Clémentine Maurice, Nicolas Scouarnec, Christoph Neumann,
Olivier Heen, and Aurélien Francillon. Reverse engineering
Intel last-level cache complex addressing using performance
counters. In Symposium on Research in Attacks, Intrusions,
and Defenses, pages 48–65, 2015.

[37] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas
Giner, Daniel Gruss, Carlo Alberto Boano, Stefan Mangard,
and Kay Römer. Hello from the other side: SSH over robust
cache covert channels in the cloud. In Network and Distributed
System Security Symposium, pages 8–11, 2017.

[38] Micron, Inc. DDR4 SDRAM MT40A2G4, MT40A1G8,
MT40A512M16 data sheet. https://www.micron.com/products/
dram/ddr4-sdram/, 2015.

[39] Thomas Moscibroda and Onur Mutlu. Memory performance
attacks: Denial of memory service in multi-core systems. In
USENIX Security Symposium, 2007.

[40] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and
Angelos D Keromytis. The spy in the sandbox: Practical cache
attacks in JavaScript and their implications. In ACM SIGSAC
Conference on Computer and Communications Security, pages
1406–1418, 2015.

[41] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael
Schwarz, and Stefan Mangard. DRAMA: Exploiting DRAM
addressing for cross-CPU attacks. In USENIX Security
Symposium, pages 565–581, 2016.

[42] Rui Qiao and Mark Seaborn. A new approach for rowhammer
attacks. In Hardware Oriented Security and Trust, pages
161–166, 2016.

[43] Moinuddin K. Qureshi. CEASER: mitigating conflict-based
cache attacks via encrypted-address and remapping. In MICRO,
pages 775–787, 2018.

[44] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano
Giuffrida, and Herbert Bos. Flip Feng Shui: Hammering a
needle in the software stack. In USENIX Security Symposium,
pages 1–18, 2016.

[45] Mark Seaborn and Thomas Dullien. Exploiting the DRAM
rowhammer bug to gain kernel privileges. In Black Hat’15,
2015.

[46] Seyed Mohammad Seyedzadeh, Alex K Jones, and Rami
Melhem. Counter-based tree structure for row hammering
mitigation in DRAM. IEEE Computer Architecture Letters,
16(1):18–21, 2016.

[47] Seyed Mohammad Seyedzadeh, Alex K Jones, and Rami
Melhem. Mitigating wordline crosstalk using adaptive trees
of counters. In International Symposium on Computer
Architecture, pages 612–623, 2018.

[49] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopou-
los, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Throwhammer: Rowhammer attacks over the network and
defenses. In USENIX Annual Technical Conference, 2018.

[48] Mungyu Son, Hyunsun Park, Junwhan Ahn, and Sungjoo Yoo.
Making DRAM stronger against row hammering. In Design
Automation Conference, pages 1–6, 2017.

[50] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step:
A practical attack framework for precise enclave execution
control. In SysTEX@SOSP, pages 4:1–4:6, 2017.

[51] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer,
Daniel Gruss, Clémentine Maurice, Giovanni Vigna, Herbert
Bos, Kaveh Razavi, and Cristiano Giuffrida. Drammer:
Deterministic rowhammer attacks on mobile platforms. In
ACM SIGSAC Conference on Computer and Communications
Security, pages 1675–1689, 2016.

[52] Stephan van Schaik, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. Malicious management unit: Why stopping
cache attacks in software is harder than you think. In USENIX
Security Symposium, pages 937–954, 2018.

[53] Pepe Vila, Boris Köpf, and José F. Morales. Theory and
practice of finding eviction sets. In IEEE Symposium on
Security and Privacy, pages 39–54, 2019.

[54] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael
Schwarz, Daniel Gruss, and Stefan Mangard. ScatterCache:
Thwarting cache attacks via cache set randomization. In
USENIX Security Symposium, pages 675–692, 2019.

[55] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael
Schwarz, Daniel Gruss, and Stefan Mangard. ScatterCache:
thwarting cache attacks via cache set randomization. In
USENIX Security Symposium, pages 675–692, 2019.

[56] Xin-Chuan Wu, Timothy Sherwood, Frederic T. Chong, and
Yanjing Li. Protecting page tables from rowhammer attacks
using monotonic pointers in DRAM true-cells. In Architectural
Support for Programming Languages and Operating Systems,
pages 645–657, 2019.

[57] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu
Teodorescu. One bit flips, one cloud flops: Cross-VM row
hammer attacks and privilege escalation. In USENIX Security
Symposium, pages 19–35, 2016.

[58] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christo-
pher W. Fletcher, Roy H. Campbell, and Josep Torrellas. Attack
directories, not caches: Side channel attacks in a non-inclusive
world. In IEEE Symposium on Security and Privacy, pages
888–904, 2019.

[59] Yuval Yarom and Katrina Falkner. Flush+Reload: a high
resolution, low noise, L3 cache side-channel attack. In USENIX
Security Symposium, pages 719–732, 2014.

[60] Zhenkai Zhang, Zihao Zhan, Daniel Balasubramanian, Bo Li,
Peter Volgyesi, and Xenofon Koutsoukos. Leveraging EM
side-channel information to detect rowhammer attacks. In
IEEE Symposium on Security and Privacy, May 2020.

https://www.micron.com/products/dram/ddr4-sdram/
https://www.micron.com/products/dram/ddr4-sdram/

