Application Objects in Jikes RVM—Separating the Wheat from
the Chaft

Yuval Yarom

16 December 2005

Abstract

Jikes RVM is designed for a shared memory ar-
chitecture. Adapting the design to a distributed
architecture using distributed shared memory in-
volves several decisions, the first of relates to the
objects to be shared.

This paper presents the problem, argues that
only application objects should be shared, and de-
scribes the modification required to be able to
recognise application objects.

1 Introduction

The Memory Manager of a runtime system han-
dles the mapping from the abstract object space of
the application to the memory architecture. Ob-
jects must be mapped to the memory architecture
throughout their lifetime, i.e. between the first and
the last time the application accesses them. But
as the memory is limited, and as the object space
may be very large, it is desirable not to keep dead
objects mapped.

Most modern memory managers use Garbage
Collection to determine the lifetime of objects. The
garbage collector scans the application’s objects
graph, and determines which objects are reachable.
Reachable objects are those that the application
can access either directly (e.g. the local variables of
an active function) or by following a pointer from
a reachable object. While not all reachable objects
are alive, to be alive, an object must be reachable.
Garbage (or unreachable) objects, are dead, and
can be unmapped safely.

Distributed Shared Memory (DSM) is a memory
architecture that hides the complexity of communi-
cation in a distributed system by presenting appli-

cations with the semantics of a region of memory
shared by all the nodes in the system. To provide
the sharing, the DSM intercepts the applications’
access to the memory, and transfers the data us-
ing a dedicated communication protocol—the Co-
herency Protocol.

As the DSM presents the semantics of a shared
region of memory, any garbage collection algorithm
designed for a shared memory multiprocessor can
work on a DSM. Nevertheless, it seems reasonable
to assume that the performance of the system can
be improved by adapting the garbage collection al-
gorithm to the DSM architecture and by sharing in-
formation between the two. Published garbage col-
lection algorithms for DSMs (8,9, 10] include some
level of information exchange between the memory
manager and the DSM, however, no study of the
extent of sharing required and the expected bene-
fits has been published.

To conduct such a study a flexible DSM system
is required. Such a system should be easily config-
ured for multiple DSM architectures and allow easy
prototyping of garbage collection algorithms. It is
also desired that the system will be able to execute
the commonly used garbage collection benchmarks
and do that with a reasonably high performance.

IBM’s Jikes RVM [1] seems to meet most of
the requirements. MMTk [2], Jikes RVM’s mem-
ory manager, is designed for rapid prototyping of
garbage collection algorithms. Jikes RVM has been
used for comparative studies of garbage collection
algorithms for several memory architectures [3,4,6].
It does not, however, support DSM.

One of the first problems encountered when ex-
tending Jikes RVM to provide DSM is how to
split the object space between the shared and non-
shared regions. The shared region should not con-
tain any application-visible references to objects in

50




the non-shared region. Running the application in-
side an Isolate [5,7] would have provided an easy
way of identifying shared objects. Jikes RVM, how-
ever, does not support Isolates, and does not main-
tain any distinction between shareable and non-
shareable objects.

This paper suggests a possible solution to the
problem. It argues that only application objects
should be shared, and offers a way to modify Jikes
RVM to distinguish between application and VM
objects.

2 Jikes RVM

Jikes RVM is a Java Virtual Machine written al-
most entirely in Java with the core Java classes
provided by the Gnu Classpath package. The VM
is based on a byte code to machine code compiler,
which is used to compile both the application code
and the VM code. This allows Jikes RVM to exe-
cute itself, eliminating the need for a “host” virtual
machine that executes Jikes RVM.

Using the same compiler for compiling both the
VM code and the application code allows Jikes
RVM to remove all the boundaries between the
VM and the application. Having no boundaries
implies less need for data conversion and higher
interoperability. In particular, having no bound-
aries between the VM and the application allows
Jikes RVM to inline VM code in the application’s
methods, and optimise the VM code for the spe-
cific uses by the application. However, having no
boundaries between the application code and the
VM code means that it may be hard to distinguish
between application objects and VM objects.

Some of the operations required for a JVM, such
as accessing the host memory architecture or ex-
ecuting compiled code, are not supported by the
Java language. These operations are abstracted in
Jikes RVM by magic classes. When the compiler
compiles a method that accesses a magic class, it
inserts the code to do the abstracted operation in-
stead of invoking the method of the magic class.
Another form of magic supported is compiler direc-
tives (pragmas). These are indicating on a per class
basis by declaring the class to implement a magic
interface, or on a per method basis by declaring the
method as throwing a magic exception. Pragmas
are used to modify the way the compiler generates

the code of the affected methods. Uses of pragmas
include control of inlining of methods and to disal-
low thread switches when executing uninterruptible
methods. )

Objects in jikes RVM are composed of two sec-
tions: a header and a body. The body contains
the values of the instance fields of the object. The
header contains meta data about the object, includ-
ing the default hash code for the object, garbage
collection information, optional profiling informa-
tion, and a pointer to the Type Information Block
(TIB) of the type.

The TIB holds information related to all the ob-
jects of the type. This information comprises a
pointer to an object representing the type, a virtual
methods table that points to the compiled code of
the instance methods of the class, and information
used to facilitate invocation of interface methods
and dynamic type checking.

Pointers to static methods and members are
stored in a global data structure—the Jikes RVM
Table Of Contents (JTOC). The JTOC also stores
references to the TIBs of the loaded types.

3 Splitting the Object Space

In order to extend the Jikes RVM to provide a DSM
architecture, it must firstly be decided which ob-
jects are to be shared (reside in the shared region)
and which are local.

Two requirements guide this decision. The first is
that, as the memory manager and the DSM should
share information, the DSM should be implemented
inside the Jikes RVM. It should be noted that if the
DSM is implemented inside the VM, some objects
must be local to the node. These objects include,
for example, the implementation of the coherency -
protocol and objects accessed by uninterruptible
methods.

The second requirement is that references to a
local object are only followed on the node in which
the local object resides. As the VM has little con-
trol over the application, this requirement implies
that all the objects used by the application should
be shared. This includes objects of the application
specific classes and objects belonging to core Java
classes that are created by the application.

Two strategies can be used by the VM to avoid
accessing local objects from remote nodes. The first

51




can be used when the system guarantees that equiv-
alent objects must exist on every node. (For exam-
ple, the TIBs of each type must exist on every node,
and all the TIBs of a given class are equivalent.) In
such a case, pointers to the object can be converted
between external and internal representation (swiz-
zled) when the pointers are exported or imported.
This ensures that at each node the pointer refer-
ences the local representation of the object. For
other objects, remote procedure calls can be used
for accessing the objects.

Sharing the application objects while keeping the
VM objects local, meets both requirements.

While Jikes RVM does not distinguish between
the application objects and the VM objects, it does
maintain partial distinction between some applica-
tion classes and VM classes. Application classes
are loaded by the application classloader, whereas
VM classes are loaded by the bootstrap classloader.
However, this distinction is not sufficient to meet
the second requirement because core classes are
also loaded by the bootstrap classloader and some
objects (e.g. the hash table used to implement
String.intern()) are used by both the VM code
and the application code.

To meet the second requirement, another
classloader—the VM classloader—is added to Jikes
RVM. The VM classloader is used to load the
VM classes and the core classes for the VM use,
while the bootstrap classloader is used for loading
core classes for the application. As Java classes
are uniquely identified by the class name and the
defining classloader, the use of a VM classloader,
which is not accessible by the application, main-
tains a complete separation between application
classes and VM classes and precludes the creation
of references from application objects to VM ob-
jects.

A complete separation does have its drawbacks.
The application does need a way to communicate
with the VM. To allow such communication, VM
specific classes are always loaded by the VM class-
loader. The application code can access these VM
specific classes, but is limited to using only prim-
itive types and VM specific classes. Core classes
cannot be used. The glue layer between Classpath
and the VM is now being rewritten to use only this
limited interface.

The separation described above handles sharing
of objects. It does not, however, allow sharing of

static members of the application classes. To sup-
port such sharing, the JTOC will have to be divided
into a shared region containing the static fields of
the application classes, and a local region contain-
ing all the information related to the VM classes
as well as the TIB pointers and the pointers to the
code of static methods of the application classes.

4 Conclusion

This paper presented some of the effort that is re-
quired for providing DSM support in Jikes RVM.
While the work is far from being complete it seems
that the major problems have been addressed, and
that there will be no significant impediments to the
implementation.

References

[1] B. Alpern et al. The Jalapefio virtual ma-
chine. IBM Systems Journal, 39(1):211-238,
Feb. 2000.

[2] S. M. Blackburn, P. Cheng, and K. S. McKin-
ley. A garbage collection design and bakeoff
in JMTk: An efficient extensible java memory
management toolkit. Technical Report TR-
(CS-03-02, The Australian National University,
Sept. 2003.

(3] S. M. Blackburn, P. Cheng, and K. S. McKin-
ley. Myths and realities: the performance
impact of garbage collection. SIGMETRICS
Performance Evaluation Review, 32(1):25-36,
2004.

[4] S. M. Blackburn and K. S. McKinley. In or
out? Putting write barriers in their place.
In International Symposium on Memory Man-
agement, Berlin, Germany, June 2002.

[6] G. Czajkowski. Application isolation in the
Java Virtual Machine. In Proceedings of the
15th ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages,
and Applications (OOPSLA’00), pages 354—
366, Minneapolis, Minnesota, United States,
Oct. 2000.

52



[6]

(8]

(9

—

[10]

M. Hertz, Y. Feng, and E. D. Berger. Garbage
collection without paging. In PLDI ’05: Pro-
ceedings of the 2005 ACM SIGPLAN confer-
ence on Programming language design and im-
plementation, pages 143-153, New York, NY,
USA, 2005. ACM Press.

Java Community Process. JSR 121: Applica-
tion Isolation API Specification, Dec. 2005.

D. S. Munro, K. E. Falkner, M. C. Lowry,
and F. A. Vaughn. Mosaic: A non-intrusive
complete garbage collector for DSM systems.
In Proceedings of the First IEEE- Interna-
tional Symposium on Cluster Computing and
the Grid (CCGrid 2001), pages 539-546, Bris-
bane, May 2001. IEEE Computer Society.

R. Veldema, R. A. F. Bhoedjang, and H. E.
Bal. Distributed shared memory management
for Java. In Proceedings of the Sizth Annual
Conference of the Advanced School for Com-
puting and Imaging (ASCI 2000), pages 256—
264, Lommel, Belgium, June 2000.

W. Yu and A. Cox. Conservative garbage
collection on distributed shared memory sys-
tems. In Proceedings of the 16th International
Conference on Distributed Computing Systems
(ICDCS ’96), pages 402-410, Hong Kong, May
1996.

53




