
Revisiting Prime+Prune+Probe: Pitfalls and Remedies

Moritz Peters, Florian Stolz, Jan Philipp Thoma, Tim Güneysu, and Yuval Yarom
Ruhr University Bochum

Abstract—Randomizing the mapping of memory addresses
to cache locations is a promising approach for protecting
computer systems against cache attacks. Multiple randomized
caches have been proposed recently, with the aim of preventing
adversaries from creating eviction sets – collections of ad-
dresses that compete with target memory addresses on cache
space. However, Purnal et al. (IEEE SP 2021) demonstrated
the PRIME+PRUNE+PROBE attack, which allows attackers to
efficiently build generalized eviction sets, which evict the target
memory address with a high probability. As the complexity
of constructing eviction set is a key factor in randomized
cache design, the PRIME+PRUNE+PROBE attack significantly
reduces the security bounds of these randomizing designs.

Since the PRIME+PRUNE+PROBE attack is probabilistic,
generalized eviction sets often get stuck after repeated use,
making them ineffective for typical cache attack settings. Prior
works have noticed this behavior and proposed mitigation
approaches, based on evicting members of the eviction set from
the cache, using either probabilistically, by random memory
accesses, or directly, using dedicated flush instructions. How-
ever, these techniques are not accompanied by an analysis of
their effectiveness or any evaluation of their success.

In this work we revisit the analysis of the PRIME+PRUNE+
PROBE in light of the possibility of eviction sets getting stuck.
We first observe that flushing does not behave as anticipated
in realistic cache architectures where invalid cache lines are
filled first before evicting other lines. We also propose a new
technique for allowing repeated attacks – combining random
noise with flushing. We conduct an in-depth analysis of all
discussed techniques and compare their complexity attack-
ing an AES T-table implementation. We find that combining
probabilistic eviction with flushing outperforms the traditional
approaches by a factor of two, allowing attackers to run with
higher granularity, being able to observe victim processes even
better than before.

Index Terms—Cache Side Channels, Cache Randomization,
Prime+Prune+Probe

1. Introduction

The microarchitecture of modern CPUs is riddled with
side channels that can be exploited to leak sensitive informa-
tion, such as secret encryption keys, across process bound-
aries [22, 39, 40]. Side channels introduced by memory ac-
cess latency variations due to hardware caches have been ex-
tensively analyzed in recent years [9, 12, 14, 20, 44, 50, 53].

These caches are essential components of almost every
computer microarchitecture, bridging the performance gap
between the CPU and the memory. Caches shorten and even
remove pipeline stalls by storing the contents of recently
accessed memory regions close to the CPU, to allow faster
access when that memory region is used again. Due to the
extent of the performance difference, attackers can reliably
determine whether a given memory access was served from
the cache or from memory. Moreover, cache side-channel at-
tacks are often used as a building block in other attacks. For
example, transient execution attacks, such as Spectre [16]
and Meltdown [18], leverage cache side channels to leak
secrets through microarchitectural state.

Generally, there are two types of cache side-channel
attacks. Flush-based attacks like FLUSH+RELOAD [50] and
FLUSH+FLUSH [12] leverage a cache maintenance instruc-
tion like clflush on x86 to flush a shared memory address
from the cache. Based on timing information, the attacker
can then determine whether a victim process has accessed
the flushed memory address and thus recover a secret being
processed by the victim. Since flush-based attacks rely on
cache maintenance instructions, which are rarely used in be-
nign workloads, they are easy to detect and can be prevented
by defining the cache flush instruction as privileged on the
ISA level.

Contention-based attacks, on the other hand, exploit the
physical hardware architecture of modern caches and are,
thus, much more challenging to mitigate. Here, the attacker
must construct an eviction set, i.e., a collection of addresses
guaranteed to replace the victim’s address from the cache.
This is feasible because the set-associative structure of most
caches allows a given address to map to only a small num-
ber of cache lines. The simple addressing function allows
efficient construction of such eviction sets [20, 37, 42, 45].
The PRIME+PROBE attack [20, 25, 44] uses an eviction set
to replace a victim address from the cache. Then, the victim
is triggered to perform a secret-dependent operation, which,
depending on the secret, reloads the victim address to the
cache and replaces one of the eviction set addresses. The
attacker then probes the eviction set addresses, measuring
the access latency to detect cache misses and learn whether
the victim has accessed the address. There are many vari-
ants of contention-based cache attacks, including PRIME+
SCOPE [29], PRIME+ABORT [9], and EVICT+TIME [25].

Cache-index randomization schemes attempt to mitigate
contention-based attacks by randomizing the mapping of
addresses to cache lines [21, 41, 46, 47], hampering con-
struction of eviction sets. In response, Purnal et al. [28] gen-

eralize some of the designs and propose PRIME+PRUNE+
PROBE, a generic attack on randomized cache architec-
tures. While cache randomization still provides a significant
security improvement over traditional caches, the authors
show that attackers can still cause targeted evictions when
using a generalized eviction set, i.e., a set of addresses
that is likely to replace the victim’s address. In response,
a variety of advanced randomized cache architectures that
protect against PRIME+PRUNE+PROBE attacks have been
proposed [11, 34, 43]. While they indeed hinder such attacks
they increase the performance and area overheads or rely
not-standard hardware.

In this paper, we first reintroduce a critical property of
cache attacks, where eviction sets get stuck in the cache
after using them repeatedly, rendering them unusable for
any further use. Since many practical cache side-channel
attacks rely on many iterations to recover, e.g., a secret
key, this problem makes PRIME+PRUNE+PROBE imprac-
tical in these scenarios. While this issue has already been
observed [28, 38, 47], it was not discussed in much detail.
Therefore, we investigate why and when generalized evic-
tion sets get stuck in randomized caches and how an attacker
can efficiently resume the attack when in this state. To this
end, we first perform a theoretical analysis of the problem
and verify our findings using CacheFX [10], a framework
for evaluating the security of randomized caches. Following
this we discuss already known techniques to alleviate the
mentioned issue in more detail. These are namely using
multiple eviction sets [47], probabilistic eviction via random
accesses [10, 28] and flushing the eviction set after each
probe step [38]. The latter, i.e., flushing the eviction set, ap-
pears the fastest and cleanest option, however, we identify a
fundamental issue with this technique stemming from a gap
between simulated and real-world caches. Specifically, we
note that real-world caches prioritize invalid cache lines over
replacing valid lines when serving cache fills. Ultimately,
this property leads to the flush technique inoperative. To fix
this, we propose a new strategy, which combines flushing
the eviction set followed by accesses to random memory
location. This combination effectively re-enables the use of
cache line flushes. We then evaluate these methods, again
using CacheFX, to measure their effectiveness in allowing
attacks to progress through multiple iterations. Specifically,
we are interested in the probability with which the attack
can successfully detect victim accesses. To set the evaluating
into more context, we run an attack against an AES T-table
implementation with the discussed techniques. Our analysis
shows that our proposed technique combining flushing and
random accesses serves effectively re-enables the utilization
of flushes while outperforming random accesses.

To summarize, the contributions of this work are:
• We revisit PRIME+PRUNE+PROBE and analyze a known

but until now sidelined issue with generalized eviction
sets and victim addresses getting stuck in the randomized
caches during PRIME+PRUNE+PROBE (Section 3).

• We perform a theoretical analysis of this problem (Sec-
tion 3.1) and discuss its root cause (Section 3.2).

• Using CacheFX [10], we perform an experimental eval-
uation and quantify the security of different randomized
caches against PRIME+PRUNE+PROBE (Section 3.3).

• We discuss different techniques an attacker can employ to
prevent their eviction set from getting stuck in randomized
caches and find that flushing the eviction does not function
as intended in real-world cache architectures (Section 4).

• We propose combining random noise with flushing as a
strategy for overcoming eviction sets getting stuck.

• We analyze mitigation techniques to evaluate their effec-
tiveness of enabling an attacker to observe victim accesses
and compare their complexity attacking an AES T-table
implementation (Section 5).

2. Background

In this section, we introduce the relevant background to
caches, cache attacks, eviction sets, and randomized cache
architectures.

2.1. Caches

Caches are moderately small, SRAM-based memory
modules located close to the execution units. Since most
workloads exhibit spatial and temporal locality, an access
to a memory address is likely to be followed by an access
to a close by address soon after. Caches exploit this locality
to bridge the performance gap between the main memory
and the processing unit. By storing recently accessed data,
they reduce the latency of future accesses to the stored data.
Modern CPUs usually feature three levels of cache. The L1
cache is the smallest and fastest, while the L3 cache (also
known as Last Level Cache, or LLC) is much larger but
also slower. The L1 and L2 caches are usually instantiated
for each core, while the LLC is shared among all cores.

To allow identifying the memory addresses stored in the
cache, each cache entry contains a tag that identifies the
address, in addition to the data. In fully associative caches,
a cache entry can be placed in any location within the cache.
However, due to the hardware and power costs associated
with such designs, most modern caches are set-associative.
A set-associative caches, the cache is divided into s sets,
each containing w cache entries. The cache associativity is
the number of cache entries, or ways, in each set, i.e., a
cache with w ways is often called w-ways associative. To
locate or to store data in set-associative caches, the processor
maps each memory address to a cache set, using a predefined
mapping function. A common choice of function is to take
a sequence of i index bits of the address, where 2i = s.
However, many caches use more complex functions [14,
51]. Address bits that are used as index do not need top be
included in the tag, because they are implied by the cache
set. When storing a new cache entry into the cache, the
replacement policy selects one of the w entries within the
set in which the data will be stored. Any data previously
stored in the selected entry is written back to memory, if
needed, and removed from the cache.

2.2. Cache Attacks

Since the design goal of caches is to reduce the latency
of memory accesses, the fact that cache hits are measurably
faster than cache misses is actually well intended. However,
many attacks have demonstrated that this timing difference
can be exploited to leak secret information like private keys
from co-located processes.

There are two types of cache attacks: Flush-based at-
tacks like FLUSH+RELOAD [50] and FLUSH+FLUSH [12]
leverage a cache maintenance instruction to flush an address
shared between the attacker and the victim from the cache.
Then, the attacker observes whether the victim reloads
the address based on timing. FLUSH+RELOAD has, for
example, been used to recover secret keys across virtual
machines [50], while FLUSH+FLUSH has been used as a
key logger and to recover secret keys from an AES T-table
implementation. The requirement that the attacker and the
victim have shared memory and the unprivileged access to
the cache maintenance instruction limits the applicability
of flush-based attacks. By defining the cache line flush
instruction as privileged on the Instruction Set Architecture
(ISA) level, flush-based attacks can be prevented easily.

Contention-based attacks, on the other hand, are much
harder to mitigate since they exploit the set-associative struc-
ture of the cache. For the PRIME+PROBE attack [25, 44], the
attacker must first find addresses that map to the same cache
set as the victim address. In particular, they need to find w
addresses that collide with the victim address. This set of
addresses is called a minimal eviction set. By accessing the
eviction set addresses, the attacker can force an eviction
of any other addresses stored in the targeted cache set,
including the victim address. Thus, the attacker first primes
the cache set for the attack by accessing the eviction set
addresses. Then, the victim process is triggered to perform
an operation that, depending on the secret, accesses an
address that maps to the target set or not. By re-accessing
the eviction set addresses and measuring the latency, the
attacker learns whether one of the eviction set addresses
has been replaced or not, thus leaking the secret. There
are many other variants of contention-based attacks, includ-
ing PRIME+SCOPE [29], PRIME+ABORT [9] and EVICT+
TIME [25]. All contention-based attacks have in common
that they rely on the attacker’s ability to construct eviction
sets. Several algorithms have been proposed for the efficient
construction of eviction sets [15, 20, 37, 42, 45, 49, 53].

2.3. Randomized Cache Architectures

Several techniques have been explored to mitigate
contention-based side-channel attacks, including attack de-
tection [2, 5, 7, 24, 52], cache partitioning [13, 26, 32, 35,
36, 48], and cache randomization [8, 11, 21, 30, 31, 34, 41,
43, 47]. While the security of attack detection schemes based
on Hardware Performance Counters (HPCs) has recently
been questioned [6, 17, 54], mitigation techniques based
on partitioning are not well scalable to the requirements of
general-purpose CPUs. On the other hand, randomization

appears to be a promising solution, with multiple indepen-
dent works finding a significant improvement in the security
against contention-based cache attacks. Generally, random-
ized cache architectures use a randomization function, e.g.,
SCARF [4], to derive a randomized cache set from the
physical memory address. Thus, attackers can no longer
trivially construct eviction sets by choosing addresses that
match in the bit range used for the cache-set selection. Most
randomized cache architectures use multiple partitions to
prevent attackers from profiling addresses that collide in a
given cache set. Often, the number of partitions is chosen
equal to the associativity of the cache. Then, a physical
address maps to a different cache set of size 1 in each cache
way. Given a w-way set-associative randomized cache, the
attacker would have to find w addresses that map to the exact
same candidate entries as the target address in each cache
way to obtain a traditional eviction set that is guaranteed
to replace the target address. Due to the large number of
possible combinations, this is infeasible [47].

We now briefly describe the cache architectures consid-
ered in this paper.

CEASER [31] is a randomized cache architecture with
only one partition, i.e., it uses traditional cache sets.
The randomization function derives the set index from
the physical address, and the replacement policy selects
the cache line in which the data is placed.

CEASER-S [30] introduces partitions to CEASER to in-
crease the security against profiling attacks. In partic-
ular, CEASER-S proposes using two partitions divided
by the cache ways and using different keys for the
randomization. However, it is possible to use CEASER-
S with more than two partitions. In this paper, we
denote CEASER-S with x partitions as CEASER-S x.

PhantomCache [41] is based on a set-associative cache
where x salt values are combined with a hash function
to compute x set indices for a physical address. If the
requested address is not cached, one of the x sets is
chosen randomly. The way in which the data is stored is
then determined by the replacement policy. When writ-
ing PhantomCache x, we mean PhantomCache with x
random sets per address.

ScatterCache [47] is concurrent work with
CEASER-S [30] and takes a similar approach.
However, ScatterCache defines the number of
partitions P = w, where w is the cache’s associativity

While randomized cache architectures are secure against
traditional PRIME+PROBE attacks that rely on eviction sets,
Purnal et al. [28] found that attackers can still observe
cache accesses by using so-called generalized eviction sets.
A generalized eviction set contains addresses xi that col-
lide with the target address V in at least one cache way:
G = {xi | ∃j ∈ {1, ..., w} : fj(v) = fj (xi)}. For a large
|G|, the generalized eviction set has a high probability of
evicting V and can, thus, be used for PRIME+PROBE-style
attacks. The PRIME+PRUNE+PROBE attack [28] can be used
to construct such generalized eviction sets and to make
valuable observations during the attack using the generalized

Input: Victim V , pruning set P , eviction set size s
Output: Eviction Set G

1 while |G| < s do
// Prime and Prune

2 do
3 for addr in P do
4 access(addr)
5 end
6 while one access misses the cache

// Trigger victim access
7 access(V)

// Probe
8 for addr in P do
9 is miss = access(addr)

10 if is miss then
11 G = G ∪ {addr}
12 end
13 end
14 end
Algorithm 1: Algorithmic overview of the PRIME+
PRUNE+PROBE attack.

eviction set. To construct G, the attacker first primes the
cache with a large set of random addresses P . Then, they re-
access these addresses until no further self-evictions occur.
This step is called pruning and is essential since, otherwise,
the initial set of random addresses may have partially evicted
itself due to internal collisions, which would lead to false
observations during the probe phase. The pseudorandom
mapping allows the entries from the initial priming set to
rattle into place by accessing them multiple times. Finally,
the attacker triggers an access to the victim address V .
If this access misses in the cache, the CPU will replace
an entry in the cache with the victim entry. If the victim
address replaces one of the addresses from the priming set,
the attacker can observe this access by probing the priming
set. When a cache miss occurs, the attacker learns that the
replaced address from P collides with the victim address
in one of the cache ways. Thus, the address is added to G,
and the process is repeated until G is large enough. The full
algorithm can be found in Algorithm 1.

In the attack phase, the attacker first accesses the ad-
dresses from G, similar to the PRIME+PROBE attack. If
G is large, the attacker must prune the eviction set by re-
accessing it until no more self-evictions occur. Then, the
attacker triggers the victim program, which, depending on
a secret, accesses V . By probing the addresses from G, the
attacker learns with some probability (depending on the size
of G) whether the victim accessed the address or not.

2.4. Previous work on PRIME+PRUNE+PROBE

Since the publication of the PRIME+PRUNE+PROBE
attack, various works have noted deficiencies that degrade
its performance. Purnal et al. [28] mentioned a penalty when
the victim is already cached, which requires additional ac-
tions by the adversary. They suggest either accessing random
addresses to evict the victim or accepting a degraded success

probability. While they do provide formulas for calculating
the penalty an attacker faces when the victim is cached, they
do not further elaborate on the number of random accesses
required to evict the victim probabilistically. During the
evaluation of different cache designs, Genkin et al. [10]
also found that when no victim access is detected during
an attack round, both the eviction set and the victim are
cached and thus remain stuck. In line with Purnal et al. [28],
they state that an additional step is required to dislodge the
victim and the eviction set if they both fit into the cache.
Here again, accessing random addresses or, more generally,
probabilistic eviction was proposed as a solution but not
further evaluated with respect to how many addresses are
required or the impact on attacks. Song et al. [38] discovered
that the case of the victim and eviction set being in the
cache must happen after some iterations in both CEASER-
S and ScatterCache, if the eviction set is not fully congruent.
Contrary to previous works, they suggest that using cache
flush instructions to evict the attacker’s eviction set is a much
cleaner approach than using probabilistic eviction. With the
attacker’s eviction set not being cached anymore, it can
be used again to (probably) evict the victim address and
detect its reintroduction in the cache. However, the authors
seem to have overlooked the effect of invalid cache lines
prioritization when the processor performs cache fills.

In summary, the issue of eviction sets getting stuck in
the cache has been noted in past works and some approaches
for addressing it have been proposed. However, a systematic
evaluation of these approaches and their interaction with
cache behavior is still missing.

3. Revisiting PRIME+PRUNE+PROBE

In this section we analyze a previously identified, but
sidelined, problem [10, 28, 47]. Specifically, mounting a
conventional PRIME+PRUNE+PROBE style attack poses sig-
nificant additional challenges for the attacker due to an
inherent cache property, which we define as stickiness. In the
following we first explain the emerging problem and then
evaluate the designs analyzed by Purnal et al. [28], namely
CEASER(-S) [30, 31] and ScatterCache [47].

3.1. PRIME+PRUNE+PROBE in Practice

To showcase practical issues with PRIME+PRUNE+
PROBE, we use ScatterCache, which is based on the cal-
culation of a unique index for each cache way based on the
requested address and a security domain identifier. However,
our results can also be applied to other cache architectures,
which are vulnerable to PRIME+PRUNE+PROBE, albeit with
different probability functions. We perform our analysis on a
cache consisting of four sets and four ways. We assume the
attacker has already established a generalized eviction set
G. The attacker’s goal is to observe an access to the victim
address V . We introduce some reasonable limitations to
simplify the theoretical analysis. At the end of this section,
we discuss the consequences of lifting these limitations.
First, we assume that only the adversary and the victim

1

2

3

4
Primed Cache

ways
s
e
t
s

Possible Victim Locations

(a) An eviction set occupies
some of the possible victim
locations.

1

3

4
Cache after Victim Access

Eviction Set Entries

ways
s
e
t
s

(b) A victim access is
caught by the eviction set,
replacing one of its entries.

Victim Entry

1 2

3

4
Stuck Cache

ways
s
e
t
s

(c) The cache fails to re-
place the victim with the
removed eviction set entry.

Figure 1: Visualisation of the problem occurring when performing PRIME+PRUNE+PROBE.

access the cache. Second, we assume that no self-evictions
occur when the adversary accesses the finalized eviction set.
This makes the prune step obsolete. Third, we assume that
the cache uses a random replacement policy, as initially
proposed by Werner et al. [47]. Lastly, all accesses are
required to take place within one rekeying period.

In order to perform PRIME+PRUNE+PROBE, the adver-
sary starts by accessing the generalized eviction set G. As G
is not fully congruent with the victim, it has some catching
probability pc, i.e., the probability pc defines the ability
of the attacker to observe an access to the victim address.
Generally, a larger G increases the catching probability. For
this example, we assume that G has pc = 0.9, meaning
whenever the victim performs a cache access we have a 90%
probability of being able to observe it using G. This initial
step of loading G into the cache is shown in Figure 1a,
where entries 1–4 are occupied by G. Since G is not
fully congruent, not all potential victim entries are occupied
by addresses from G. Afterwards, the adversary triggers a
victim access, which can result in two different outcomes:
(1) the adversary catches the access or (2) the adversary
does not catch the access. In case (1), the entry of G has
been replaced, as seen in Figure 1b, where green denotes
the victim entry. During the probe step, the replaced entry
will be re-accessed, leading to two more possibilities: (3)
the replacement policy selects the victim as the replacement
candidate, or (4) the policy selects an entry that is not the
victim as the replacement candidate. Case (3) represents the
ideal case for the attacker, as it mimics the behavior of a
traditional non-randomized cache. The victim is removed
from the cache, thus reverting the state back to the beginning
(Figure 1a), and the adversary can continue the attack. As we
defined the replacement policy to be random, there will be w
possible locations for the entry of G, hence the probability of
ending up in case (3) equals 1

w . However, case (4), shown
in Figure 1c, causes a problem for the adversary as now
all of G, as well as the victim, are present in the cache.
Consequently, further victim accesses will result in a hit,
thus never replacing any entry of G. Moreover, any access
to addresses from G will result in cache hits and, thus, will

not replace any data on access. We refer to this state as
being stuck because the eviction set and the victim entry
are cached, and the attacker has no opportunities to remove
them using G. Similarly, case (2) will immediately result in
being stuck as the state of G was never modified in the first
place. Therefore, the overall probability of getting stuck in
our example is 0.1+0.9 ·0.75 = 0.775 or more generalized:

psc,stuck = (1− pc) + pc · (1−
1

w
)

In the case of ScatterCache, psc,stuck scales with the number
of cache ways.

We now discuss how lifting our limitations will impact
our theoretical results. If we allow other processes to access
the cache, stray accesses may evict the victim, enabling
the adversary to continue the attack. However, the success
probability heavily depends on the activity of the other
processes. When self-evictions are allowed, the previously
evicted entry of G may be placed at a location currently
occupied by G. Similarly to stray accesses to the cache,
this may lead to cascading evictions during the prime step,
thus giving the adversary a slight chance of removing the
victim from the cache. Lastly, suppose the cache uses a least-
recently-used replacement policy. In that case, the problem
worsens as the victim will most likely be the most recently
used entry, thus forcing the replacement policy not to select
the victim for the entry of G.

In summary, two main properties of PRIME+PRUNE+
PROBE and its eviction set can be identified as causing the
problem of the attack getting stuck.
(a) The pruning behavior of PRIME+PRUNE+PROBE as-

sumes to have the entire eviction set in the cache at
once.

(b) The resulting eviction set is only partially congruent
with the victim.

Property (a) causes all attacker-available addresses that
might conflict with the victim to be cached and cannot be
used to evict the victim again. Even if a conflict is detected
– the victim has replaced an address in the eviction set – the
attacker has only a single address at their disposal to evict

the victim again with only a certain probability. Property (b)
has two aspects to it. First, since the produced eviction set is
only partially congruent to the victim, no conflict might be
detected, resulting in both the eviction set and the victim
being cached, with no way for an attacker to efficiently
get the victim out of the cache again. Second, as already
mentioned for the first property, even if an address is evicted,
due to the partial congruence, the evicted address might not
evict the victim if reaccessed by an attacker.

3.2. The Root Cause

We introduced that PRIME+PRUNE+PROBE does not
work as expected because an adversary gets stuck after just
a few iterations. We refer to the underlying property which
causes this behavior as stickiness. A sticky cache is designed
to retain cache entries within the cache. The attentive reader
may be led to the conclusion that this is the objective of all
caches. However, when one considers randomized caches, a
different picture emerges.

While standard caches try to keep cache entries in the
cache as long as possible, they do not implement any precau-
tions in case an entity tries to force evictions. Randomized
caches, on the other hand, implement such precautions and
try to keep entries in the cache even in the presence of
forced evictions. We define stickiness as the success of a
cache in keeping certain entries cached in the presence of
forced evictions.

In order to gain further insight, we consider the role of a
potential attacker. The objective of randomized cache archi-
tectures is to protect against cache side-channel attacks, such
as PRIME+PROBE [25, 44]. In a cache that is vulnerable
to such attacks, the attacker can construct an eviction set
and access it to evict a victim entry from the corresponding
cache set. This approach is effective in the majority of
instances, as it results in the eviction set filling the entire
cache set, assuming the use of least recently used (LRU)
replacement. We define this as non-sticky behavior, in that,
an attacker can evict victim cache entries from the cache
with an eviction set in a reliable and repeatable manner.

Considering randomized caches, this is no longer the
case. Building upon the work of Purnal et al. [28], it can
be seen that the reliability of eviction sets in random-
ized, skewed caches such as CEASER-S [30] and Scatter-
Cache [47] is reduced. As a result, it becomes more difficult
for the attacker to evict victim entries. We would therefore
describe such a cache as more sticky, since it is harder for
the attacker to precisely evict entries.

3.3. Result Validation

In this section, we use CacheFX [10] to verify that
the problem of getting stuck does occur in different cache
architectures and to find how long it takes for the attacker
to reach a stuck state. CacheFX is a flexible framework for
evaluating different cache designs regarding their security.

The original paper that proposes the PRIME+PRUNE+
PROBE attack [29] presents a successful attack on an AES

T-Table implementation. The authors used memory trace
recordings to simulate the attack rather than using a known
cache simulator or a system-level simulator. Thus, the results
of our theoretical analysis deviate from the results of the
attack analysis. We suspect that the discrepancy results from
the approach taken for the attack evaluation. We stress that
the attack, in principle, remains valid. However, we show
that the effectiveness of generalized eviction sets is lower
than originally assumed.

The theoretical analysis shows that there is some prob-
ability for the attack to get stuck after each iteration. Using
CacheFX, we evaluate CEASER, CEASER-S, ScatterCache,
and PhantomCache with a fixed size of 4096 cache lines and
random replacement. The victim is a single-access victim
that only accesses one specific address per attack iteration.
As also required in real-world cache attacks, we assume that
the attacker can trigger the victim’s access. We implemented
a new attacker, the single access attacker, that performs a
standard PRIME+PRUNE+PROBE attack without any addi-
tional actions, such as flushing the eviction set or accessing
random addresses after each iteration. We then measure
the number of successful victim access detections by the
attacker over 1000 attack iterations for each combination of
cache design and associativity.
ce

as
er

ce
as

er
-s

1
ce

as
er

-s
2

ce
as

er
-s

4
ce

as
er

-s
8

ce
as

er
-s

16
sc

a�
er

ca
ch

e
ph

an
to

m
ca

ch
e 1

ph
an

to
m

ca
ch

e 2
ph

an
to

m
ca

ch
e 4

ph
an

to
m

ca
ch

e 8
ph

an
to

m
ca

ch
e 1

6

0

2

4

6

8

10

D
et

ec
te

d
vi

ct
im

ac
ce

ss
es 1 Way

2 Ways
4 Ways
8 Ways
16 Ways

Figure 2: The number of successfully detected victim ac-
cesses for different caches and associativities for 1000 attack
iterations. Results are averaged over 100 runs.

Figure 2 shows the results of the experiments. The
y-axis is cut off at 10 victim accesses to keep our focus on
lower values. For CEASER, CEASER-S with one partition,
ScatterCache with one way, and PhantomCache 1, all victim
accesses are successfully caught. This is to be expected
since CEASER, CEASER-S 1, and PhantomCache 1 only
select one random set for each address, which results in
the behavior of a non-randomized set-associative cache. In
these cases, the victim and all the eviction set addresses
are exclusively mapped to the same cache set. Even with a
random replacement policy, the probability of evicting the
victim in either the prime or probe step is very high. In
contrast, ScatterCache, with only one way, is essentially a
direct-mapped cache, meaning that the eviction set contains

only a single address, which is guaranteed to evict the
victim. The final outlier is PhantomCache 16 with 16 ways.
Unlike the previous cases, the reason that in this config-
uration almost all victim accesses are successfully caught
is no similarity with set-associative caches. Instead, in this
configuration, the size of the eviction sets grows beyond
the cache size. Hence, in each iteration, there are enough
addresses to either evict the victim or cause self-evictions,
which, in turn, can evict the victim or cause more self-
evictions. Coming full circle, the reason behind the large
eviction set is that PhantomCache 16 with 16 ways almost
behaves the same as a fully associative cache.

The more interesting cases, however, are those where
almost no victim accesses are caught. This directly indicates
that the attackers get stuck after only a few iterations, where
the eviction set and the victim are all cached. There are, at
most, two detections for such test cases before the attackers
get stuck. Those two detections directly correlate to the
iteration in which the attack gets stuck.

In conclusion, we see that for almost all caches the attack
gets stuck after one or two iterations. This also confirms, at
least for ScatterCache, our calculated value of being stuck
with a probability of 0.775. Next, we present approaches to
restore the functionality of the attack.

4. Remedies

As previously shown, getting stuck presents a realistic
and serious challenge to the adversary. In this section we
discuss techniques used to solve this issue and let the
adversary continue the attack. First, we lay out techniques
previously used in literature [10, 28, 38, 47] and discuss their
benefits and limitations. We identify that flushing on its own
does not function as intended in realistic cache scenarios and
propose a new technique to alleviate the problem. Generally,
in order to solve the issue, the attacker must either cause a
replacement of the victim address or any address from G,
which can then be used to replace the victim with some
probability.
Rotating Eviction Sets. One option is to use multiple
eviction sets in a rotating, round-robin fashion, somewhat
similar to what was proposed in Werner et al. [47]. It
can be applied either alone or in combination with either
of the above remedies. In the preparation for the attack,
the adversary generates multiple eviction sets for the same
victim address. Subsequently, a distinct eviction set is used
in each attack iteration. The idea is that the other eviction
sets can evict addresses from a previously used eviction set
or the victim itself, as long as it is not stuck. There is,
however, no guarantee that the attack will succeed without
any eviction set becoming stuck. In particular, if there are
only a few eviction sets, they may all get stuck in the cache
along with the victim. This could occur as soon as each of
the eviction sets has been used once. Using a sufficiently
large number of eviction sets, such that the total number
of addresses in all the eviction sets exceeds the cache’s
capacity, ensures that some addresses in the eviction sets
will always be evicted. Those uncached addresses could

potentially evict the victim when priming the corresponding
eviction set again. Although this may seem like a vast
number of addresses, it is important to recall that a single
eviction set is small. Only the addresses belonging to one
eviction set are accessed during one iteration of the attack,
ensuring that the number of addresses accessed per iteration
is kept low. The disadvantage, however, lies in the profiling
phase before this, where multiple eviction sets need to be
constructed instead of a single one.

Purge. Another way an adversary may try to resolve being
stuck is to introduce a purge step after each attack iteration,
enabling repeated use of the same eviction set [10, 28].
As noted in Section 3.1, stray accesses of other processes
may evict the victim. However, the adversary can perform
these accesses independently by generating a set of ran-
dom addresses and accessing them. Therefore, adding a
purge step after each probe iteration will achieve the
required eviction with some probability. This step must be
performed every time since the cache state is unknown,
and the adversary does not know whether they are stuck
or not. While it would be preferable for the adversary to
completely overwrite the current cache state by accessing
as many addresses as possible, this approach would take a
long time, delaying the next iteration of the attack. Thus,
they have to find a balance between the amount of purging
and attack granularity. In general, the adversary should strive
for a high granularity to catch all victim accesses, limiting
the time for the purge step. However, as we show, even a
relatively low number of addresses can lead to a successful
eviction of the victim. For our analysis, we first determine
the worst-case scenario for the adversary: the purge step
neither hits the victim nor G, therefore not changing the
relevant cache state. The probability pwc can be modeled
via the binomial distribution, as each access represents an
independent event with success (e.g., hitting the victim or
G) or failure outcome. Thus, for ScatterCache:

psc,wc =

(
n

n

)
·
(
l − |G| − 1

l

)n

·
(
1− l − |G| − 1

l

)n−n

=

(
l − |G| − 1

l

)n

,

where n denotes the number of attempts and l is the number
of cache lines. If, for example, 400 random addresses are
used for purging, the purge step will fail for a ScatterCache
configuration with 4096 lines and four ways and an eviction
set of size 34, with a probability of 3.23%. Purging hitting
the victim at least once represents the best-case scenario,
and its probability can be computed via

psc,bc =

n∑
k=1

(
n

k

)
·
(
1

l

)k

·
(
1− 1

l

)n−k

.

In our example, the attacker will succeed with 9.29%. Lastly,
we consider the case in which purge accesses hit G, which

happens with a probability of

psc,ec =

n∑
k=1

(
n

k

)
·
(
|G|
l

)k

·
(
1− |G|

l

)n−k

,

which equals 96.43% in our example. Removing some
addresses of G basically grants the adversary another try to
evict the victim during the prime stage, where G is loaded.
The removed addresses act, in essence, like a smaller evic-
tion set Gs, which is a subset of G. For our configuration,
the average size (i.e., the expected value) of Gs = 3.32.
Under the assumption that they share a mapping with the
victim, the probability of success can be calculated using
the formula stated by Purnal et al. [28]:

pe = 1−
(
1− 1

w

) |Gs|
P

,

where P denotes the partitions equal to the number of ways
for ScatterCache. Therefore, in our example, the adversary
has a 19.40% chance to remove the victim during the
prime step. If we account for self-evictions, the probability
may increase. Thus, the total probability of evicting the
victim becomes approximately 0.09 + 0.96 · 0.19 = 0.27.
We, therefore, conclude that an additional purge step
effectively enables the adversary to continue the attack after
only a few iterations. We note that this analysis focuses
on ScatterCache; therefore, the probabilities differ for other
cache architectures.
Flushing The Eviction Set. Song et al. [38] proposed
that flushing the eviction set G after each probe would
be much cleaner and faster than using random accesses to
the LLC. They argue that cache flush instructions such as
clflush will be available for the attacker in user-space
in the foreseeable future. Even if only privileged software
could access those instructions, attacks from malicious ker-
nels or hypervisors might still be possible.

Similar to other recent research [10, 28], Song et al. [38]
assume that replacement policies in caches do not differen-
tiate between valid and invalid cache lines. However, filling
an invalid line, if one exists, offers performance benefits over
evicting a valid cache line, because it reduces the number
of conflict misses and avoids the overhead required for
handling the coherency state and writebacks. Consequently,
most caches prioritize filling invalid lines. We verified that
invalid cache lines are filled first on Intel i9-7900X, i7-
12700KF, i9-13900T, i7-Ultra 265K and Xeon E-2224G
processors. By filling a cache set and flushing a line, then
accessing another address mapping to the same set, we ob-
serve that invalid lines are filled first. Abel and Reineke [1]
observed the same behavior when reverse-engineering the
replacement policy of contemporary processors.

In the context of the approach of Song et al. [38],
whenever G is flushed, the cache lines of all of the address
in G are marked invalid. When G is immediately accessed
in the next prime step, there is a high probability that one or
more of the possible placements of each address is an invalid
cache line. These are now filled with priority over replacing

existing cache lines. Subsequently, the victim address will
most likely not be evicted by priming the eviction set again,
leading to the same state as prior to flushing G. While
the authors seem to have modeled the cache correctly by
prioritizing invalid cache lines, they have not tried to use
the same eviction set repeatably. This ultimately lead to the
issue remaining unseen.
Flush and Purge. Building on Song et al. [38], we propose
to combine flushing and purge accesses, to partially recover
the benefits of flushing over priming the LLC with numerous
randomly chosen addresses. Under ideal conditions, when
the attacker only employs purging, hitting an eviction set
entry of G with a purge access becomes

Psuccess = Phit,set · Phit,way =
1

|sets|
· 1

|ways|
,

as the random address must fall into the same set as the
eviction set entry and also must hit the eviction set entry
by random chance. By flushing the eviction set G before
performing purging, we can actively modify the Phit,way

probability and enhance the purge step. More specifically,
flushing sets the probability Phit,way = 1, because the cache
will prioritize the flushed locations previously occupied by
G. In general, the success probability of removing a stuck
eviction set using Flush+Purge is larger than that of pure
purging because:

1

|sets|
>

1

|sets|
· 1

|ways|
,

as long as there are at least two ways, which can be
safely assumed for typical cache configurations. When using
Flush+Purge the randomly chosen purge address only needs
to hit the target set. As a result, the subsequent prime step
will place addresses of G in new locations, increasing the
likelihood of evicting the victim. In the best-case scenario,
this combination of flush and purging completely fills the
gaps left by the eviction set, increasing the probability of
evicting the victim to the original catching probability. If the
purging step does not fill the gap completely, some entries
of the eviction set may still be placed at their old location,
thus not affecting the victim. This ultimately leads us to
higher success rates of letting the attack continue without
increasing the number of addresses used during the purge.

5. Evaluation

In this section, we evaluate the previously discussed
remedies enabling the attacker continue the attack. We use
the following cache configurations (See Appendix A for
additional configurations):

1) CEASER-S [30] with two partitions
2) ScatterCache [47]
3) PhantomCache [41] with eight random cache sets.

We omit CEASER [31] because, as mentioned in Sec-
tion 3.3, it is not susceptible to the issue. We first evaluate
our proposed solutions individually for each randomized
cache architecture. Then, we compare the results to see

which solution works the best and which cache gets stuck
the most.
Setup. We use CacheFX [10] as the cache simulator. In
all configurations we use a cache of size 4096 cache lines,
with random replacement, and enable a (previously existing)
CacheFX flag to prioritize invalid caches lines. We use the
single access attacker and victim, extending the attacker
with implementations of the Purge, Flush+Purge, and using
multiple eviction sets strategies. For purge accesses we use
10% of the number of total cache lines.

1 2 4 8 16 32 64

0

25

(a) None
1 2 4 8 16 32 64

0
25
50
75

100
(b) Purge

1 2 4 8 16 32 64

0
25
50
75

100
(c) Flush+Purge

Vi
ct

im
D

et
ec

tio
n

Ra
te

(%
)

Number of Eviction Sets

Ways
2
4
8
16

Figure 3: Plot for CEASER-S 2 over the number of ways
for different solutions (None, Purge, Flush+Purge) and with
different numbers of rotating eviction sets.

CEASER-S. We first evaluate 1–64 rotating eviction sets
and with no additional purge step. As seen in Figure 3a,
with few eviction sets the detection rate remained low for
all associativities. This is due to the small eviction set sizes
of only eight addresses for two ways and 16, 34, and 68 for
other associativities, respectively. Since the total size of the
eviction sets is only a fraction of the cache size, all eviction
sets get stuck early. For high numbers of eviction sets (32,
64), the detection rate finally increased. Still, detection rates
are below 25%. It even decreased comparing two and four
ways of associativity, although an increase in total number
of addresses. For 64 rotating eviction sets and 16 ways the
detection rate spiked, reaching a 40% success rate. This can
be attributed to the increased total size of the eviction sets,
covering over a quarter of the cache, delaying the point
where all eviction sets become stuck.

Adding a purge step increased the detection rates to a
minimum of around 30% for only one eviction set (Fig-
ure 3b). 409 random addresses were accessed after each
probe step (10% of all cache lines). In contrast, without any
purging, the attacker detected at most two victim accesses
with one eviction set. As the number of rotating eviction sets
increases, so too does the detection rate. The most significant
jumps can be observed from 2 to 4 and 4 to 8. Starting with
16 eviction sets, we witness diminishing returns. Only a
minor differences were observed between 32 and 64 eviction
sets, regardless of doubling in size. Success rates reached
around 95%, which conforms approximately with the proba-
bility the eviction sets were initially built for. This highlights

1 2 4 8 16 32 64

0
25
50
75

100

(a) None

1 2 4 8 16 32 64

0
25
50
75

100

(b) Purge

1 2 4 8 16 32 64

0
25
50
75

100

(c) Flush+Purge

Vi
ct

im
D

et
ec

tio
n

Ra
te

(%
)

Number of Eviction Sets

Ways
1
2
4
8
16

Figure 4: Plot for ScatterCache over the number of ways
for different solutions (None, Purge, Flush+Purge) and with
different amounts of rotating eviction sets.

the effectiveness of combining the two approaches, purging
and rotating eviction sets, by pushing the detection rate from
30% to 95% by investing more computation time in the
profiling phase.

The results for FLUSH+PURGE on CEASER-S with two
partitions are shown in Figure 3c. Detection rates constantly
reach around 95% over all cases with only minor differences
between associativities. This highlights the effectiveness of
flushing the eviction set and letting the purging replace the
invalid cache lines.
ScatterCache. Figure 4a shows the results for Scatter-
Cache with only rotating eviction sets. With one way, the
detection rate was 100% due to the direct-mapped nature
of this configuration. For low numbers of eviction sets the
results are similar to those of CEASER-S. Starting with 16
eviction sets, the detection rate started to increase for higher
associativities. This is due to quickly increasing eviction set
sizes for those higher associativities in ScatterCache. For
example, for eight ways of associativity, the size of one
eviction set with a targeted eviction probability of 90% is
approximately 135, resulting in 8640 used addresses when
using 64 such eviction sets. This is more than double the
cache size; however, the success rate does not reach 90%,
indicating that this number is still insufficient for reliably
attacking ScatterCache. While there is a factor of two in the
total number of addresses between 32 and 64 eviction sets,
this seems to have only a minimal impact on the success
rate.

Performing purging after the probe step again increased
the detection rates (Figure 4b). The 25% mark is already
crossed using two one eviction set over all associativities.
However, we observed lower values than for CEASER-S 2.
Using more eviction sets constantly increased the detection
rate, with the biggest jumps being from two to four and
from four to eight. They peak at around 90% for 32 and
64 eviction sets. With an increasing number of ways, the
detection rates declined until eight ways. This is due to
ScatterCache effectively scaling with the number of ways
and becoming harder to attack. For 16 ways of associativity,

detection rates increased again. This is the result of the
quickly growing eviction set sizes, which in this case reaches
over 500 addresses. In total, purging increased the detection
rates in contrast to using only rotating eviction sets, however,
not as well as for CEASER-S 2. Additionally, the detection
rate being around 20–25% for one eviction set indicates that
if the attacker gets stuck, he stays in that state for around
three iterations on average. This confirms our calculated
probability of 0.27 that the purge step can evict the victim
and enable the attacker to detect further accesses.

Adding flushing of the eviction sets mostly increased
the detection rates for smaller numbers of eviction sets
(Figure 4c). For example, with two and four eviction sets,
the detection rate is at its minimum at 40% for two and
four ways and even reaches over 60% for eight and 16
ways. Generally, for two, four, and eight eviction sets there
is an increase in detection rate with increasing ways of
associativity compared to using only purging. We still see
a decline with growing associativity for the higher numbers
of eviction sets. While the additional flush does not further
push the detection rate up for high numbers of eviction sets,
it enables a smaller number to reach a much higher detection
rate. In this way, the time required during the profiling
phase to construct numerous eviction sets can be reduced
by employing fewer sets together with an additional flush.
PhantomCache. For only rotating eviction sets, we ob-
served clear differences to CEASER-S and ScatterCache
(Figure 5a). Starting at four eviction sets, detection rates
reached 90% for high associativity. Increasing the number
of eviction sets brought up the detection rates for lower
associativities one by one. This is primarily due to the high
number of addresses per eviction set for smaller associativi-
ties compared to ScatterCache and CEASER-S. One eviction
set for 16 ways contains over 1035 addresses. Computing a
set of such size takes significant effort in the profiling phase.

Figure 5b shows that with purging the detection rate
improved, particularly for configurations with low initial
detection rates. Due to the quickly growing eviction set size,
the detection rate rises as the associativity increases. For
example, the detection rate for two eviction sets and 16 ways
already reach 70%. Starting with 16 eviction sets, detection
rates cross the 75% mark for all associativities.

Adding an eviction set flush (Figure 5c) further increased
detection rates, bringing all detection rate to a minimum of
75%. While the results are higher than for ScatterCache, we
see a strong dependency to the associativity. Detection rates
of 95% are only reached for high associativities because of
very large evaluation sets. Still, the results again highlight
the effectiveness of flushing the eviction set, boosting pre-
vious detection rates of 25% to over 75%.

5.1. Comparison

Comparing the results for all three caches, it is clear
that the Flush+Purge technique yields the best results.
Combining it with rotating eviction sets can result in even
higher detection rates and lower the attacker’s probability of
getting stuck. From the point of getting stuck and detection

1 2 4 8 16 32 64

0
25
50
75

100
(a) None

1 2 4 8 16 32 64

0
25
50
75

100
(b) Purge

1 2 4 8 16 32 64

0
25
50
75

100
(c) Flush+Purge

Vi
ct

im
D

et
ec

tio
n

Ra
te

(%
)

Number of Eviction Sets

Ways
1
2
4
8
16

Figure 5: Plot for PhantomCache 8 over the number of ways
for different solutions (None, Purge, Flush+Purge) and with
different amounts of rotating eviction sets.

rates, ScatterCache [47], with high associativities, seems to
be the best option in terms of security since it has the overall
lowest rates, although not by much. For PhantomCache [41],
the detection rates are high even without any purging due
to the size of a single eviction set, and for CEASER-S [30],
we also see a higher detection rate even though it is very
similar to ScatterCache.

5.2. AES Case-Study

For evaluation in a practical context, we conducted a
case-study attacking an AES T-table implementation. Here,
we focus on two aspects: (1) highlighting the difference
between only using noise and only flushing cache lines, (2)
showing that applying both at the same time, yields values
between the two cases of (1). Rotating eviction sets are
omitted here, as their complexity would have obscured the
results and insights of primary interest. Creating an eviction
set requires around 100 times more accesses than the total
accesses needed for the attack.

For this case study, we extended the AES attack imple-
mentation of CacheFX, enabling the AES attacker to also
implement Purge and Flush+Purge. We used ScatterCache
with 4096 total cache lines, four ways, and random replace-
ment. We ran the attack 1000 times for each case, and report
in Table 1 the medians of the number of encryptions and
the number of memory accesses required to break the AES
implementation. The first two rows show the case where
neither noise nor flushing is used to dislodge the stuck
eviction set or victim. The attack stalls quickly, irrespective
of whether invalid lines are prioritized.

To implement probabilistic eviction [10, 28], we con-
figured CacheFX to accesses random memory addresses
amounting to 10% of the number of cache lines. The attack
does not get stuck, requiring about 10k encryptions and
3M memory accesses. Increasing the number of random
accesses increases the probability of evicting the eviction set
or the victim, reducing the number of encryptions required

Table 1: Complexity of attacking an AES T-table implementation.

Values Total
(Noise fixed to 10%)

Values per iteration
(Noise adjusted to reach Flush+Purge)

Flush Noise Prefer
Invalid CLs Result Encryptions Memory Accesses

(incl. noise)
Noise
(%)

Memory Accesses
(incl. noise) Flush Time

(ns)

✗ ✗ ✗ stuck - - - - -
✗ ✗ ✓ stuck - - - - -
✗ ✓ ✗ not stuck 10027 3061125 80 2404 0 166043
✗ ✓ ✓ not stuck 10353 3154048 80 2412 0 166120
✓ ✗ ✗ not stuck 2361 326440 0 119 17 5038
✓ ✗ ✓ stuck - - - - -
✓ ✓ ✗ not stuck 2839 693831 10 451 17 25624
✓ ✓ ✓ not stuck 4561 1233768 10 544 22 30595

to break AES, but, at the same time, increasing the number
of memory accesses.

To improve the attack, Song et al. [38] proposed flushing
the eviction set after each probe step instead of using costly
memory accesses. Our results confirm that, without invalid
line prioritization, this strategy reduces the number of re-
quired encryptions by a factor of five and the total number
of memory accesses by an order of magnitude. However,
when invalid cache lines are filled first, the attack gets stuck,
as described in Section 4.

Notably, applying both probabilistic eviction and flush-
ing only doubles the number of memory accesses in the
case where no cache lines are preferred. In the case where
invalid cache lines are prioritized, the attack no longer gets
stuck. However, we see a rise in complexity with 60% more
encryptions and 77% more memory accesses required to
break AES compared to only flushing the eviction set.

To verify our claim that Flush+Purge allows for a finer
attack granularity than using only Purge, we looked at the
number of accesses required to complete one attack round.
Comparing the number of accesses per iteration requires
the tested configurations to target the same success rate,
i.e., the number of encryptions to succeed. Running all
configurations with the same number of noise accesses
would result in almost identical runtimes of one iteration,
since the number of accesses (and flushes) per round is only
determined by the eviction set size, and the number of noise
accesses. In this case, less optimal configurations will simply
take more iterations to succeed. To make them comparable,
we chose Flush+Purge as baseline, which required around
4500 encryptions to succeed. Reaching this effectiveness
using only Purge requires more noise accesses than the 10%
of all available cache lines previously used. Specifically, we
had to raise the percentage to around 80% to reach a com-
parable effectiveness to Flush+Purge. We then compared the
average number of memory accesses, including noise, and
the average number of flushes. We then used these values
to establish a time estimate per iteration using LLC access
cycles from a recent Intel 7 Ultra 265K, assuming a CPU
frequency of 3GHz. Using our own benchmark we measured
60 cycles for an LLC hit and 225 cycles for an LLC miss.
Flush cycles were measured with 400 for a hit and 200 for
a miss, using the artifact of Rauscher et al. [33].

Evaluating the configuration on noise accesses (Purge)
only, raising their number to around 80% of the total cache
lines would result in 3276 noise accesses per iteration for our
cache. However, the noise is only accessed when no victim
access was detected, and thus the average number of noise
accesses and overall number memory accesses, is slightly
lower, at around 2400. We therefore estimate that a full
attack round would take a median of 166.043µs. Flushing
the eviction set without any noise significantly reduces the
time per iteration to just 5µs. However, this strategy is
only applicable, when invalid cache lines are not prioritized.
Flushing and noise (Flush+Purge) results in 30.595µs in the
case of invalid cache line prioritization. This confirms the
better granularity of Flush+Purge compared to just using
noise for the same effectiveness, lowering the runtime of an
attack round by a factor of around five.

From these result, we can draw four conclusions:
• Flushing the eviction set after each probe step, as Song

et al. [38] proposed, accelerates the attack.
• In a practical scenario, where invalid cache lines are filled

first, the flush technique fails.
• Combining flushing and noise yields slightly worse per-

formance than just flushing, but allows the attack to
function when invalid cache lines are filled first.

• Although slightly slower than just flushing the eviction
set, the combined approach still outperforms probabilistic
eviction methods [10, 28].

6. Related Work

After the disclosure of the PRIME+PRUNE+PROBE at-
tack [28], several randomized cache architectures that are
secure against this type of profiling attack have been pro-
posed. These architectures require additional complexity in
the cache design. Mirage [34] divides the cache into a
randomized tag-store and a data-store. Using this method,
Mirage can replicate the behavior of a fully associative cache
while maintaining decent complexity on the access path.
ClepsydraCache [43] combines cache randomization with a
decay mechanism, which makes observing cache conflict
very challenging for an attacker. GuardCache [23] also
implements a randomized cache architecture and introduces
false cache misses and false cache hits to create noise and,
thus, prevent the attacker from making useful observations.

Random Fill Cache [19] presents an alternative approach
that is not based on randomization. Instead of caching an
address on access, it caches an address close to the accessed
address. Thus, the attacker cannot observe which exact
address has been accessed. SassCache [11] is a skewed set-
associative cache using a keyed index derivation function.
Additionally, it splits the cache into partially overlapping
security domains.

Several works have investigated the security of random-
ized cache architectures. Bodduna et al. [3] demonstrated
that an insecure randomization function can lead to a trivial
bypass of the randomization. In response, SCARF [4] pro-
poses a cryptographically secure randomization function for
10-bit indexed caches focusing on low latency. The impact
of the replacement policy on the security of randomized
caches has been investigated in [27].

7. Conclusion

In this paper, we revisited a known but sidelined prob-
lem with PRIME+PRUNE+PROBE. In particularly, using the
same eviction set over and over again to observe victim
accesses leads to the eviction set and the victim address to
be both cached at some point. This results in the eviction set
becoming useless to the attacker, and they have to somehow
either evict their eviction set or the victim. We first did
a theoretical analysis of when and why this happens and
confirmed our findings using the CacheFX [10] simulator.
Next, we discussed three in previous literature proposed
techniques to resolve the aforementioned problem. First,
using multiple eviction sets increases the amount of time
spend in the profiling phase while keeping a high attack
granularity due to fast prime and probe steps. Utilizing purge
accesses to probabilistically evict parts of the eviction set
or the victim itself proofed as solid technique. Here the
attacker needs only one eviction set, accelerating profiling,
but reducing the attack granularity since the purge accesses
delay following iterations. We found that the proposed tech-
nique by Song et al. [38] of flushing the eviction set after
each probe does not function as intended when prioritizing
invalid caches lines, as it is the case in common cache
architectures. To this end we improved on their idea and
propose a combined technique FLUSH+PURGE which re-
enables flushing. All techniques were evaluated in CacheFX
to see how they performed and set them into context at-
tacking an AES T-table implementation. As a result, we
show that using FLUSH+PURGE is almost twice as fast
as only purge accesses and effectively enables an attacker
to repeatedly use the same eviction set to observe victim
accesses.

Acknowledgments

We would like to thank Daniel Gruss for the discussion,
advice, and support.

This work was supported by an ARC Discovery Project
number DP210102670; the Deutsche Forschungsgemein-

schaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy - EXC 2092 CASA - 390781972
and Priority Program SPP 2253 Nano Security through
the projects RAINCOAT II (440059533) and EMBOSOM
(535695900); and the German Federal Ministry of Re-
search, Technology and Space (BMFTR) through the project
MANNHEIM-FlexKI (01IS22086I).

References

[1] Andreas Abel and Jan Reineke, “nanobench:
A low-overhead tool for running microbench-
marks on x86 systems,” in IEEE International
Symposium on Performance Analysis of Systems
and Software, ISPASS 2020, Boston, MA, USA,
August 23-25, 2020. IEEE, 2020, pp. 34–
46. https://doi.org/10.1109/ISPASS48437.2020.00014.
https://doi.org/10.1109/ISPASS48437.2020.00014

[2] Mohammad-Mahdi Bazm, Thibaut Sautereau, Marc
Lacoste, Mario Südholt, and Jean-Marc Menaud,
“Cache-based side-channel attacks detection through
Intel cache monitoring technology and hardware per-
formance counters,” in Fog and Mobile Edge Comput-
ing (FMEC 2018), 2018, pp. 7–12. https://doi.org/10.
1109/FMEC.2018.8364038

[3] Rahul Bodduna, Vinod Ganesan, Patanjali SLPSK,
Kamakoti Veezhinathan, and Chester Rebeiro, “Bru-
tus: Refuting the security claims of the cache timing
randomization countermeasure proposed in CEASER,”
IEEE Comput. Archit. Lett., vol. 19, no. 1, pp. 9–12,
2020. https://doi.org/10.1109/LCA.2020.2964212

[4] Federico Canale, Tim Güneysu, Gregor Leander,
Jan Philipp Thoma, Yosuke Todo, and Rei
Ueno, “SCARF – a low-latency block cipher for
secure cache-randomization,” in USENIX Sec, 2023,
pp. 1937–1954. https://www.usenix.org/conference/
usenixsecurity23/presentation/canale

[5] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz,
“Real time detection of cache-based side-channel at-
tacks using hardware performance counters,” Applied
Soft Computing, vol. 49, pp. 1162–1174, 2016. https:
//doi.org/10.1016/j.asoc.2016.09.014

[6] Sanjeev Das, Jan Werner, Manos Antonakakis,
Michalis Polychronakis, and Fabian Monrose, “SoK:
The challenges, pitfalls, and perils of using hardware
performance counters for security,” in IEEE SP, 2019,
pp. 20–38.

[7] John Demme, Matthew Maycock, Jared Schmitz,
Adrian Tang, Adam Waksman, Simha Sethumadha-
van, and Salvatore J. Stolfo, “On the feasibility of
online malware detection with performance counters,”
in ISCA, 2013, pp. 559–570. https://doi.org/10.1145/
2485922.2485970

[8] Ghada Dessouky, Tommaso Frassetto, and
Ahmad-Reza Sadeghi, “HybCache: Hybrid side-
channel-resilient caches for trusted execu-
tion environments,” in USENIX Sec, 2020,

https://doi.org/10.1109/ISPASS48437.2020.00014
https://doi.org/10.1109/ISPASS48437.2020.00014
https://doi.org/10.1109/FMEC.2018.8364038
https://doi.org/10.1109/FMEC.2018.8364038
https://doi.org/10.1109/LCA.2020.2964212
https://www.usenix.org/conference/usenixsecurity23/presentation/canale
https://www.usenix.org/conference/usenixsecurity23/presentation/canale
https://doi.org/10.1016/j.asoc.2016.09.014
https://doi.org/10.1016/j.asoc.2016.09.014
https://doi.org/10.1145/2485922.2485970
https://doi.org/10.1145/2485922.2485970

pp. 451–468. https://www.usenix.org/conference/
usenixsecurity20/presentation/dessouky

[9] Craig Disselkoen, David Kohlbrenner, Leo
Porter, and Dean M. Tullsen, “Prime+Abort: A
timer-free high-precision L3 cache attack using
Intel TSX,” in USENIX Sec, 2017, pp. 51–67.
https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/disselkoen

[10] Daniel Genkin, William Kosasih, Fangfei Liu, Anna
Trikalinou, Thomas Unterluggauer, and Yuval Yarom,
“CacheFX: A framework for evaluating cache secu-
rity,” in AsiaCCS, 2023, pp. 163–176. https://doi.org/
10.1145/3579856.3595794

[11] Lukas Giner, Stefan Steinegger, Antoon Purnal, Maria
Eichlseder, Thomas Unterluggauer, Stefan Mangard,
and Daniel Gruss, “Scatter and split securely: De-
feating cache contention and occupancy attacks,” in
IEEE SP, 2023, pp. 2273–2287. https://doi.org/10.
1109/SP46215.2023.10179440

[12] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard, “Flush+Flush: A fast and stealthy
cache attack,” in DIMVA, 2016, pp. 279–299. https:
//doi.org/10.1007/978-3-319-40667-1 14

[13] Zecheng He and Ruby B. Lee, “How secure is
your cache against side-channel attacks?” in MICRO,
2017, pp. 341–353. https://doi.org/10.1145/3123939.
3124546

[14] Ralf Hund, Carsten Willems, and Thorsten Holz,
“Practical timing side channel attacks against ker-
nel space ASLR,” in IEEE SP, 2013, pp. 191–205.
https://doi.org/10.1109/SP.2013.23

[15] Tom Kessous and Niv Gilboa, “Prune+PlumTree -
finding eviction sets at scale,” in IEEE SP, 2024.

[16] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom, “Spectre attacks: Exploit-
ing speculative execution,” in IEEE SP, 2019, pp. 1–19.
https://doi.org/10.1109/SP.2019.00002

[17] William Kosasih, Yusi Feng, Chitchanok Chuengsa-
tiansup, Yuval Yarom, and Ziyuan Zhu, “SoK: Can we
really detect cache side-channel attacks by monitoring
performance counters?” in AsiaCCS. ACM, 2024.
https://doi.org/10.1145/3634737.3637649

[18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg, “Meltdown: Reading
kernel memory from user space,” in USENIX
Sec, 2018, pp. 973–990. https://www.usenix.org/
conference/usenixsecurity18/presentation/lipp

[19] Fangfei Liu and Ruby B. Lee, “Random fill cache
architecture,” in MICRO, 2014, pp. 203–215. https:
//doi.org/10.1109/MICRO.2014.28

[20] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser,
and Ruby B. Lee, “Last-level cache side-channel at-
tacks are practical,” in IEEE SP, 2015, pp. 605–622.
https://doi.org/10.1109/SP.2015.43

[21] Fangfei Liu, Hao Wu, Kenneth Mai, and Ruby B. Lee,
“Newcache: Secure cache architecture thwarting cache
side-channel attacks,” IEEE Micro, vol. 36, no. 5, pp.
8–16, 2016. https://doi.org/10.1109/MM.2016.85

[22] Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yinqian
Zhang, “A survey of microarchitectural side-channel
vulnerabilities, attacks, and defenses in cryptography,”
ACM Comput. Surv., vol. 54, no. 6, pp. 122:1–122:37,
2022. https://doi.org/10.1145/3456629

[23] Fernando Mosquera, Krishna Kavi, Gayatri Mehta, and
Lizy K. John, “Guard cache: Creating noisy side-
channels,” IEEE Comput. Archit. Lett., vol. 22, no. 2,
pp. 97–100, 2023. https://doi.org/10.1109/LCA.2023.
3289710

[24] Maria Mushtaq, Ayaz Akram, Muhammad Khur-
ram Bhatti, Maham Chaudhry, Vianney Lapotre, and
Guy Gogniat, “NIGHTs-WATCH: a cache-based side-
channel intrusion detector using hardware performance
counters,” in HASP@ISCA, 2018, pp. 1:1–1:8. https:
//doi.org/10.1145/3214292.3214293

[25] Dag Arne Osvik, Adi Shamir, and Eran Tromer,
“Cache attacks and countermeasures: the case of AES,”
in CT-RSA, 2006, pp. 1–20. https://doi.org/10.1007/
11605805 1

[26] Dan Page, “Partitioned cache architecture as a side-
channel defence mechanism,” IACR Cryptol. ePrint
Arch. 2005/280, 2005. http://eprint.iacr.org/2005/280

[27] Moritz Peters, Nicolas Gaudin, Jan Philipp Thoma,
Vianney Lapôtre, Pascal Cotret, Guy Gogniat, and Tim
Güneysu, “On the effect of replacement policies on the
security of randomized cache architectures,” ASIACCS
2024, 2024.

[28] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid
Verbauwhede, “Systematic analysis of randomization-
based protected cache architectures,” in IEEE SP,
2021, pp. 987–1002.

[29] Antoon Purnal, Furkan Turan, and Ingrid Ver-
bauwhede, “Prime+Scope: Overcoming the observer
effect for high-precision cache contention attacks,” in
CCS, 2021, pp. 2906–2920.

[30] Moinuddin K. Qureshi, “New attacks and defense for
encrypted-address cache,” in ISCA, 2019, pp. 360–371.
https://doi.org/10.1145/3307650.3322246

[31] Moinuddin K. Qureshi, “CEASER: mitigating conflict-
based cache attacks via encrypted-address and remap-
ping,” in MICRO, 2018, pp. 775–787. https://doi.org/
10.1109/MICRO.2018.00068

[32] Moinuddin K. Qureshi and Yale N. Patt, “Utility-based
cache partitioning: A low-overhead, high-performance,
runtime mechanism to partition shared caches,” in
MICRO, 2006, pp. 423–432. https://doi.org/10.1109/
MICRO.2006.49

[33] Fabian Rauscher, Luca Wilke, Hannes Weissteiner,
Thomas Eisenbarth, and Daniel Gruss, “TDXploit:
Novel techniques for Single-Stepping and cache at-
tacks on intel TDX,” in 34th USENIX Security Sym-
posium (USENIX Security 25), 2025, pp. 1207–1222.

[34] Gururaj Saileshwar and Moinuddin K. Qureshi,

https://www.usenix.org/conference/usenixsecurity20/presentation/dessouky
https://www.usenix.org/conference/usenixsecurity20/presentation/dessouky
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/disselkoen
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/disselkoen
https://doi.org/10.1145/3579856.3595794
https://doi.org/10.1145/3579856.3595794
https://doi.org/10.1109/SP46215.2023.10179440
https://doi.org/10.1109/SP46215.2023.10179440
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1145/3123939.3124546
https://doi.org/10.1145/3123939.3124546
https://doi.org/10.1109/SP.2013.23
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1145/3634737.3637649
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1109/MICRO.2014.28
https://doi.org/10.1109/MICRO.2014.28
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1109/MM.2016.85
https://doi.org/10.1145/3456629
https://doi.org/10.1109/LCA.2023.3289710
https://doi.org/10.1109/LCA.2023.3289710
https://doi.org/10.1145/3214292.3214293
https://doi.org/10.1145/3214292.3214293
https://doi.org/10.1007/11605805_1
https://doi.org/10.1007/11605805_1
http://eprint.iacr.org/2005/280
https://doi.org/10.1145/3307650.3322246
https://doi.org/10.1109/MICRO.2018.00068
https://doi.org/10.1109/MICRO.2018.00068
https://doi.org/10.1109/MICRO.2006.49
https://doi.org/10.1109/MICRO.2006.49

“MIRAGE: mitigating conflict-based cache attacks
with a practical fully-associative design,” in USENIX
Sec, 2021, pp. 1379–1396. https://www.usenix.org/
conference/usenixsecurity21/presentation/saileshwar

[35] Daniel Sánchez and Christos Kozyrakis, “Scalable and
efficient fine-grained cache partitioning with Vantage,”
IEEE Micro, vol. 32, no. 3, pp. 26–37, 2012. https:
//doi.org/10.1109/MM.2012.19

[36] Sercan Sari, Onur Demir, and Gurhan Kucuk,
“FairSDP: Fair and secure dynamic cache partition-
ing,” in Conference on Computer Science and Engi-
neering (UBMK), 2019, pp. 469–474.

[37] Wei Song and Peng Liu, “Dynamically finding
minimal eviction sets can be quicker than you
think for side-channel attacks against the LLC,” in
RAID, 2019, pp. 427–442. https://www.usenix.org/
conference/raid2019/presentation/song

[38] Wei Song, Boya Li, Zihan Xue, Zhenzhen Li, Wenhao
Wang, and Peng Liu, “Randomized last-level caches
are still vulnerable to cache side-channel attacks! but
we can fix it,” in IEEE SP, 2021, pp. 955–969. https:
//doi.org/10.1109/SP40001.2021.00050

[39] Chao Su and Qingkai Zeng, “Survey of CPU cache-
based side-channel attacks: Systematic analysis, secu-
rity models, and countermeasures,” Secur. Commun.
Networks, vol. 2021, pp. 5 559 552:1–5 559 552:15,
2021. https://doi.org/10.1155/2021/5559552

[40] Jakub Szefer, “Survey of microarchitectural side and
covert channels, attacks, and defenses,” J. Hardw. Syst.
Secur., vol. 3, no. 3, pp. 219–234, 2019. https://doi.org/
10.1007/S41635-018-0046-1

[41] Qinhan Tan, Zhihua Zeng, Kai Bu, and
Kui Ren, “PhantomCache: Obfuscating cache
conflicts with localized randomization,” in
NDSS, 2020. https://www.ndss-symposium.org/ndss-
paper/phantomcache-obfuscating-cache-conflicts-
with-localized-randomization/

[42] Jan Philipp Thoma and Tim Güneysu, “Write me and
I’ll tell you secrets - write-after-write effects on Intel
CPUs,” in RAID, 2022, pp. 72–85. https://doi.org/10.
1145/3545948.3545987

[43] Jan Philipp Thoma, Christian Niesler, Dominic A.
Funke, Gregor Leander, Pierre Mayr, Nils Pohl,
Lucas Davi, and Tim Güneysu, “ClepsydraCache -
preventing cache attacks with time-based evictions,”
in USENIX Sec, 2023. https://www.usenix.org/
conference/usenixsecurity23/presentation/thoma

[44] Eran Tromer, Dag Arne Osvik, and Adi Shamir, “Ef-
ficient cache attacks on AES, and countermeasures,”
J. Cryptol., vol. 23, no. 1, pp. 37–71, 2010. https:
//doi.org/10.1007/s00145-009-9049-y

[45] Pepe Vila, Boris Köpf, and José F. Morales, “The-
ory and practice of finding eviction sets,” in IEEE
SP, 2019, pp. 39–54. https://doi.org/10.1109/SP.2019.
00042

[46] Zhenghong Wang and Ruby B. Lee, “New cache de-
signs for thwarting software cache-based side channel
attacks,” in ISCA, 2007, pp. 494–505. https://doi.org/

10.1145/1250662.1250723
[47] Mario Werner, Thomas Unterluggauer, Lukas

Giner, Michael Schwarz, Daniel Gruss, and
Stefan Mangard, “ScatterCache: Thwarting cache
attacks via cache set randomization,” in USENIX
Sec, 2019, pp. 675–692. https://www.usenix.org/
conference/usenixsecurity19/presentation/werner

[48] Yuejian Xie and Gabriel H. Loh, “PIPP: promo-
tion/insertion pseudo-partitioning of multi-core shared
caches,” in ISCA, Stephen W. Keckler and Luiz André
Barroso, Eds., 2009, pp. 174–183. https://doi.org/10.
1145/1555754.1555778

[49] Zihan Xue, Jinchi Han, and Wei Song, “CTPP: a fast
and stealth algorithm for searching eviction sets on
Intel processors,” in RAID, 2023, pp. 151–163. https:
//doi.org/10.1145/3607199.3607202

[50] Yuval Yarom and Katrina Falkner, “Flush+Reload:
a high resolution, low noise, L3 cache side-channel
attack,” in USENIX Sec, 2014, pp. 719–732.
https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/yarom

[51] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B.
Lee, and Gernot Heiser, “Mapping the intel last-
level cache,” IACR Cryptol. ePrint Arch. 2015/905.
http://eprint.iacr.org/2015/905

[52] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee,
“CloudRadar: A real-time side-channel attack detec-
tion system in clouds,” in RAID, 2016, pp. 118–140.
https://doi.org/10.1007/978-3-319-45719-2 6

[53] Zirui Neil Zhao, Adam Morrison, Christopher W.
Fletcher, and Josep Torrellas, “Last-level cache side-
channel attacks are feasible in the modern public
cloud,” in ASPLOS, 2024, pp. 582–600. https://doi.org/
10.1145/3620665.3640403

[54] Boyou Zhou, Anmol Gupta, Rasoul Jahanshahi,
Manuel Egele, and Ajay Joshi, “Hardware perfor-
mance counters can detect malware: Myth or fact?”
in AsiaCCS, 2018, p. 457–468. https://doi.org/10.1145/
3196494.3196515

Appendix

This appendix is a collection of measurements for the
other variants of CEASER-S and PhantomCache.

Figure 6 shows the results measurement results for
CEASER-S with only one partition. It shows a detection
rate of 100% for all ways and amounts of rotating eviction
sets since it behaves like a non-randomized set-associative
cache.

The same can be observed for PhantomCache with one
random set in Figure 10, as it behaves identically.

Figure 7 shows the results for CEASER-S with four
partitions. The only difference to CEASER-S with two ways
is a higher detection rate using only 64 eviction sets and an
overall lower detection rate when adding a purge step and
utilizing Flush+Purge.

For CEASER-S with eight and sixteen partitions shown
in Figure 8 and Figure 9, respectively, the difference repeats

https://www.usenix.org/conference/usenixsecurity21/presentation/saileshwar
https://www.usenix.org/conference/usenixsecurity21/presentation/saileshwar
https://doi.org/10.1109/MM.2012.19
https://doi.org/10.1109/MM.2012.19
https://www.usenix.org/conference/raid2019/presentation/song
https://www.usenix.org/conference/raid2019/presentation/song
https://doi.org/10.1109/SP40001.2021.00050
https://doi.org/10.1109/SP40001.2021.00050
https://doi.org/10.1155/2021/5559552
https://doi.org/10.1007/S41635-018-0046-1
https://doi.org/10.1007/S41635-018-0046-1
https://www.ndss-symposium.org/ndss-paper/phantomcache-obfuscating-cache-conflicts-with-localized-randomization/
https://www.ndss-symposium.org/ndss-paper/phantomcache-obfuscating-cache-conflicts-with-localized-randomization/
https://www.ndss-symposium.org/ndss-paper/phantomcache-obfuscating-cache-conflicts-with-localized-randomization/
https://doi.org/10.1145/3545948.3545987
https://doi.org/10.1145/3545948.3545987
https://www.usenix.org/conference/usenixsecurity23/presentation/thoma
https://www.usenix.org/conference/usenixsecurity23/presentation/thoma
https://doi.org/10.1007/s00145-009-9049-y
https://doi.org/10.1007/s00145-009-9049-y
https://doi.org/10.1109/SP.2019.00042
https://doi.org/10.1109/SP.2019.00042
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1145/1250662.1250723
https://www.usenix.org/conference/usenixsecurity19/presentation/werner
https://www.usenix.org/conference/usenixsecurity19/presentation/werner
https://doi.org/10.1145/1555754.1555778
https://doi.org/10.1145/1555754.1555778
https://doi.org/10.1145/3607199.3607202
https://doi.org/10.1145/3607199.3607202
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
http://eprint.iacr.org/2015/905
https://doi.org/10.1007/978-3-319-45719-2_6
https://doi.org/10.1145/3620665.3640403
https://doi.org/10.1145/3620665.3640403
https://doi.org/10.1145/3196494.3196515
https://doi.org/10.1145/3196494.3196515

1 2 4 8 16 32 64

0
25
50
75

100

(a) None

1 2 4 8 16 32 64

0
25
50
75

100

(b) Purge

1 2 4 8 16 32 64

0
25
50
75

100

(c) Flush+Purge

Vi
ct

im
D

et
ec

tio
n

Ra
te

(%
)

Number of Eviction Sets

Ways
1
2
4
8
16

Figure 6: Victim detection rates for CEASER-S 1 over
the number of ways for different solutions (None, Purge,
Flush+Purge) and with different amounts of rotating eviction
sets.

1 2 4 8 16 32 64

0

25

50

75

(a) None

1 2 4 8 16 32 64

0
25
50
75

(b) Purge

1 2 4 8 16 32 64

0
25
50
75

(c) Flush+Purge

Vi
ct

im
D

et
ec

tio
n

Ra
te

(%
)

Number of Eviction Sets

Ways
4
8
16

Figure 7: Victim detection rates for CEASER-S 4 over
the number of ways for different solutions (None, Purge,
Flush+Purge) and with different amounts of rotating eviction
sets.

with higher rates using only eviction sets and slightly lower
rates for the other two techniques.
In Figure 10 one can find the results for PhantomCache
with only one random set. As mentioned, this behaves like a
non-randomized set-associative cache with a 100% detection
rate.

For PhantomCache with two random sets, as shown
in Figure 11, one can observe lower detection rates for
smaller associativities and amounts of eviction sets without
any purging compared to PhantomCache with eight sets.
Combining purging with a flush increases the detection
rate for smaller associativities compared to PhantomCache
with eight sets.

Figure 12 shows the results for PhantomCache with
four random sets. In this scenario, the detection rate is
increased for higher associativities and amounts of eviction
sets without any purging. At the same time, it is lower when
adding purging and a flush compared to PhantomCache
with two sets.

1 2 4 8 16 32 64

0

25

50

75

(a) None

1 2 4 8 16 32 64

0

25

50

75

(b) Purge

1 2 4 8 16 32 64

0

25

50

75

(c) Flush+Purge

Vi
ct

im
D

et
ec

tio
n

Ra
te

(%
)

Number of Eviction Sets

Ways
8
16

Figure 8: Victim detection rates for CEASER-S 8 over
the number of ways for different solutions (None, Purge,
Flush+Purge) and with different amounts of rotating eviction
sets.

1 2 4 8 16 32 64

0

25

50

75

(a) None

1 2 4 8 16 32 64

0

25

50

75

(b) Purge

1 2 4 8 16 32 64

0

25

50

75

(c) Flush+Purge

Vi
ct

im
D

et
ec

tio
n

Ra
te

(%
)

Number of Eviction Sets

Ways
16

Figure 9: Victim detection rates for CEASER-S 16 over
the number of ways for different solutions (None, Purge,
Flush+Purge) and with different amounts of rotating eviction
sets.

Finally, in Figure 13, the results for PhantomCache with
sixteen ways are presented. Here, we observe an overall
increased detection rate, mostly due to the huge size of
an eviction set for high associativities. For sixteen ways,
PhantomCache with sixteen random sets behaves almost like
a fully-associative cache. Therefore, the size of one eviction
set alone exceeds the total size of the cache, leading to an
almost 100% detection rate.

1 2 4 8 16 32 64

0
25
50
75

100

(a) None

1 2 4 8 16 32 64

0
25
50
75

100

(b) Purge

1 2 4 8 16 32 64
0

25
50
75

100

(c) Flush+Purge

Vi
ct

im
D

et
ec

tio
n

Ra
te

(%
)

Number of Eviction Sets

Ways
1
2
4
8
16

Figure 10: Victim detection rates for PhantomCache 1 over
the number of ways for different solutions (None, Purge,
Flush+Purge) and with different amounts of rotating eviction
sets.

1 2 4 8 16 32 64

0
25
50
75

(a) None

1 2 4 8 16 32 64

0
25
50
75

100
(b) Purge

1 2 4 8 16 32 64

0
25
50
75

100
(c) Flush+Purge

Vi
ct

im
D

et
ec

tio
n

Ra
te

(%
)

Number of Eviction Sets

Ways
1
2
4
8
16

Figure 11: Victim detection rates for PhantomCache 2 over
the number of ways for different solutions (None, Purge,
Flush+Purge) and with different amounts of rotating eviction
sets.

1 2 4 8 16 32 64

0
25
50
75

(a) None

1 2 4 8 16 32 64

0
25
50
75

(b) Purge

1 2 4 8 16 32 64

0
25
50
75

(c) Flush+Purge

Vi
ct

im
D

et
ec

tio
n

Ra
te

(%
)

Number of Eviction Sets

Ways
1
2
4
8
16

Figure 12: Victim detection rates for PhantomCache 4 over
the number of ways for different solutions (None, Purge,
Flush+Purge) and with different amounts of rotating eviction
sets.

1 2 4 8 16 32 64

0
25
50
75

100

(a) None

1 2 4 8 16 32 64

0
25
50
75

100

(b) Purge

1 2 4 8 16 32 64

0
25
50
75

100

(c) Flush+Purge

Vi
ct

im
D

et
ec

tio
n

Ra
te

(%
)

Number of Eviction Sets

Ways
1
2
4
8
16

Figure 13: Victim detection rates for PhantomCache 16 over
the number of ways for different solutions (None, Purge,
Flush+Purge) and with different amounts of rotating eviction
sets.

	Introduction
	Background
	Caches
	Cache Attacks
	Randomized Cache Architectures
	Previous work on Prime+Prune+Probe

	Revisiting Prime+Prune+Probe
	 Prime+Prune+Probe in Practice
	The Root Cause
	Result Validation

	Remedies
	Evaluation
	Comparison
	AES Case-Study

	Related Work
	Conclusion
	Appendix

