
Browser-Based Microarchitectural
Side-Channel Attacks

Sioli O’Connell

A thesis submitted for the degree of

DOCTOR OF PHILOSOPHY

The University of Adelaide

Supervised by

Yuval Yarom and

Damith Ranasinghe

January 2025

iii

Contents

Contents iii

List of Figures vii

List of Listings ix

List of Tables xi

Statement of Originality xv

Acknowledgements xvii

1 Introduction 1
1.1 Analysing Coarse-Grained Side-Channel Leakage 3

1.2 Mounting a High-Capacity Pixel-Stealing Attack 5

1.3 Mounting a Transient-Execution Attack on Modern Browsers 7

1.4 Transient-Execution Attacks on Security Type Systems 8

1.5 Summary of Contributions . 9

1.6 Structure of Thesis . 11

1.6.1 Other Publications . 12

2 Background 15
2.1 Microarchitecture . 15

2.1.1 Memory Caches . 15

2.1.2 Execution . 17

2.2 Microarchitectural Attacks . 18

iv

2.2.1 Cache Timing Attacks . 18

2.2.2 Transient-Execution Attacks . 20

2.3 Browsers . 21

2.3.1 Same-Site Policy . 21

2.3.2 JavaScript . 22

2.3.3 Browser Architecture . 23

2.3.4 Uint8Array . 24

2.4 Browser-Based Attacks . 25

2.4.1 Website-Fingerprinting Attacks 25

2.4.2 History Sni�ng Attacks . 26

2.4.3 Pixel-Stealing Attacks . 27

3 Attributing Microarchitectural Leakage within Systems 29
3.1 Analysis Overview . 31

3.1.1 Measurement Primitives . 31

3.1.2 Measurement Collection . 33

3.1.3 Experiment Setup . 35

3.2 Controlling Channel Contributions . 35

3.2.1 Intracore Contention . 36

3.2.2 Interrupt Handling . 36

3.2.3 Frequency Scaling . 38

3.2.4 Cache . 38

3.2.5 Validating Control . 39

3.2.6 Remaining Leakage . 40

3.3 Verifying Channel Contributions . 40

3.3.1 Intracore Contention . 41

3.3.2 Interrupt Handling . 42

3.3.3 Frequency Scaling . 43

3.3.4 Cache . 44

3.4 Measuring Channel Contributions . 46

3.4.1 Methodology . 46

3.4.2 Contributions of Channels . 47

3.5 Conclusion . 49

v

4 Mounting a High-Capacity Pixel-Stealing Attack 51
4.1 Overcoming Cross-Origin Isolation . 53

4.2 Leaking Pixels . 54

4.2.1 The feComponentTransfer Filter 56

4.2.2 Executing feComponentTransfer on the CPU 58

4.3 Recovering Pixels . 61

4.3.1 Detecting Transmitter Communications 61

4.3.2 Evaluation . 64

Varying Payload Size . 65

Identifying the Target Set . 66

System Noise . 67

4.3.3 Comparisons to Existing Works 68

4.4 From Pixel Stealing to Text Stealing . 69

4.4.1 Text Stealing Results . 72

4.5 History Sni�ng . 72

4.5.1 Straightforward History Sni�ng 73

4.5.2 Set Query Optimisation . 74

4.5.3 Experiment Description . 75

4.5.4 Results . 77

4.6 Countermeasures . 77

4.7 Limitations & Future Work . 78

4.8 Conclusions . 79

5 Mounting a Transient Execution Attack on Modern Browsers 83
5.1 Spook.js: Mounting Transient Execution Attacks in Chrome 84

5.1.1 Website Consolidation . 85

5.1.2 Breaking Address Space Isolation 86

5.1.3 Avoiding Deoptimisation . 89

5.1.4 Obtaining Deep Speculation . 91

5.1.5 End-to-End Attack Performance 94

5.2 Attack Scenarios . 95

5.2.1 Website Identi�cation . 95

5.2.2 Recovering Sensitive Information 96

vi

5.2.3 Attacking Credential Managers 97

5.2.4 Attacking Tumblr . 98

5.2.5 Exploiting Unintended Content Uploads 99

5.3 Exploiting Malicious Extensions . 100

5.4 Attacking Additional Browsers . 100

5.5 Countermeasures . 101

5.6 Limitations . 102

5.7 Conclusion . 103

6 Security Type Systems and Transient Execution 115
6.1 AES Background . 117

6.2 PoC Attack . 118

6.3 Conclusion . 120

7 Conclusion 123

A Full Address Calculation 141

vii

List of Figures

2.1 Uint8Array Memory Layout . 25

3.1 Baseline . 34

3.2 Reduced Leakage . 39

3.3 Intracore Leakage . 41

3.4 Interrupt Leakage . 42

3.5 Frequency Scaling Leakage . 44

3.6 Cache Leakage . 45

4.1 Overview of a Pixel-Stealing Attack . 52

4.2 Bypassing Cross-Origin Isolation . 55

4.3 Recovering Pixel Data . 56

4.4 Preamble Memory Access Patterns . 63

4.5 Recovered Images . 65

4.6 Packet Size vs. Time & Error Rates . 66

4.7 E�ect of system noise on leakage . 67

4.8 Stretching Pixel vs. Vector Content . 69

4.9 Naive Text Stealing Results . 70

4.10 Example Regions . 71

4.11 Layout of Wikipedia Username . 72

4.12 History Sni�ng Memory Access Patterns 76

5.1 Comparing Memory Layout . 88

5.2 Cacheline Overview . 92

5.3 Results – Bitbucket – Contents . 104

5.4 Results – Bitbucket – Open Subdomains 105

viii

5.5 Results – University – Contact Information 106

5.6 Results – University – Bank Details . 107

5.7 Results – Chrome Password Manager – Passwords 108

5.8 Results – LastPass – Passwords . 109

5.9 Results – Hidden Frame . 110

5.10 Results – LastPass – Credit Cards . 110

5.11 Results – Tumblr – Password . 111

5.12 Results – Tumblr – Open Subdomains . 112

5.13 Results – Google Photos . 113

5.14 Results – Lastpass – Master Password . 113

ix

List of Listings

2.1 SVG Filter Example . 28

3.1 Psuedocode for Measurement Primitives 32

3.2 Linked-List Element . 33

4.1 Malicious �lter de�nition . 57

4.2 Firefox’s feComponentTransfer implementation 58

4.3 Applying a preamble . 62

4.4 History Sni�ng CSS Style . 73

5.1 Pseudocode for Array Accesses . 87

5.2 Pseudocode for Speculative Type Confusion 90

5.3 Pseudocode for Finding Objects that Straddle Cachelines 93

6.1 One-Time Pad Example . 116

6.2 Protected AES Implementation . 121

6.3 Pseudocode for AES Attack . 122

xi

List of Tables

3.1 System Con�gurations . 35

3.2 Interrupt Leakage (By device) . 43

3.3 Correlating Channels and Measurement Primitives 48

4.1 Filter Execution Location . 59

4.2 Time To Identify a Target Set . 67

4.3 Comparing Pixel-Stealing Attacks . 68

4.4 Set Query Accuracy Results . 81

5.1 Spook.js Performance on Various Architectures 95

5.2 Spook.js Performance on Brave and Edge 101

xiii

Abstract

Web browsers have become a critical component of the modern computing ecosystem.

They execute code from websites to enable rich interactions; however, this capability can

be exploited by malicious websites to launch attacks directly on user devices. The risk is

further ampli�ed by microarchitectural side-channel attacks, which leverage hardware

characteristics to leak sensitive data. Although comprehensive theoretical countermeas-

ures exist, they are often impractical for use across entire browsers. As a result, browser

vendors have resorted to implementing ad-hoc countermeasures to address these threats.

This issue raises the central question of this thesis: Are these ad-hoc countermeasures
e�ective in protecting users against microarchitectural side-channel attacks? To answer

this question, the thesis investigates and implements microarchitectural variants of four

attack types: website �ngerprinting, pixel stealing, memory disclosure, and reduced-round

encryption attacks.

The thesis begins by investigating the underlying causes of leakage in three recent

microarchitectural website-�ngerprinting attacks. The �ndings reveal that multiple inde-

pendent sources contribute to the observed leakage, each leaking su�cient information

to enable website �ngerprinting. These results suggest that e�ective protection requires

comprehensive and multi-faceted countermeasures.

The thesis then introduces two attacks: Pixel Thief and Spook.js, both of which are

practical, end-to-end microarchitectural attacks implemented in JavaScript and capable

of targeting modern browsers. Pixel Thief is a cache-based pixel-stealing attack that

leverages data-dependent memory access patterns in Scalable Vector Graphics �lters

to recover portions of rendered webpages. Spook.js is a memory disclosure attack that

exploits transient type confusion to access arbitrary process memory. Together, these

attacks demonstrate that previous mitigation e�orts against microarchitectural threats

are insu�cient.

xiv

Finally, the thesis presents a proof-of-concept (PoC) attack against controlled leakage
in security type systems through a reduced-round encryption attack on the Advanced

Encryption Standard (AES). Security type systems enable developers to annotate secret

values, allowing the compiler to automatically enforce protections against leakage. These

systems often assume sequential execution, however modern processors exhibit out-of-

order execution. The PoC attack exploits this mismatch in execution semantics to leak

secret values by triggering controlled leakage earlier than the developer intended.

While this thesis shows that ad-hoc countermeasures have been insu�cient, it does not

claim they are ine�ective. The attacks presented here have had reduced impact, required

more sophisticated implementation techniques, and required stronger assumptions of

adversarial capabilities demonstrating the e�cacy of these countermeasures. Furthermore,

this work has also informed browser vendors and website operators in the development of

new countermeasures that further reduce the threat posed by microarchitectural attacks.

xv

Statement of Originality

I certify that this work contains no material which has been accepted for the award of any

other degree or diploma in my name, in any university or other tertiary institution and, to

the best of my knowledge and belief, contains no material previously published or written

by another person, except where due reference has been made in the text. In addition, I

certify that no part of this work will, in the future, be used in a submission in my name,

for any other degree or diploma in any university or other tertiary institution without the

prior approval of the University of Adelaide and where applicable, any partner institution

responsible for the joint award of this degree. The author acknowledges that copyright of

published works contained within the thesis resides with the copyright holder(s) of those

works.

I give permission for the digital version of my thesis to be made available on the web,

via the University’s digital research repository, the Library Search and also through web

search engines, unless permission has been granted by the University to restrict access

for a period of time.

I acknowledge the support I have received for my research through the provision of

an Australian Government Research Training Program Scholarship.

xvii

Acknowledgements

I dedicate this thesis to my family and friends, both academic and personal. I genuinely

appreciate each and every one of you. Thank you for joining me on this long, di�cult,

but rewarding journey. Without you, none of this would have been possible.

– Cheers, Sioli

I would like to further thank the following people:

My supervisors Yuval and Damith (and uno�cial supervisor Daniel)

My co-authors

My friends at UofA, UMich and Georgia Tech

Finally, my parents Shane and Margaret

1

Chapter 1

Introduction

Over the past thirty years, the Internet has become an integral part of modern life,

revolutionising communication by connecting billions of people to each other and to the

services they use daily.

The primary gateway to the Internet is the browser, software that connects to and

renders websites. Given their central role in connecting users to online services, browsers

have become a critical component of the modern computing ecosystem. People rely on

them to access everything from routine content to highly sensitive information. As a

result, browsers accumulate vast amounts of sensitive data, making them attractive targets

for adversaries.

Malicious websites attack browsers by exploiting how browsers, by default, automat-

ically execute code embedded within webpages. This code, typically written in JavaScript,

is designed to enable rich, interactive user experiences. However, the same capabilities

can be misused by adversaries to launch attacks from within the browser.

Fortunately, browser vendors are aware of these threats, and modern browsers are

designed to isolate websites from one another and from the rest of the system. A key

component responsible for maintaining this isolation is the JavaScript engine, which

executes JavaScript code within the browser. The JavaScript engine enforces several

security-critical invariants, such as bounds and type checking, and enables the browser

to mediate access to external resources, including the �le system, network, and other

websites.

The rest of the browser security model is built upon this foundation. If the JavaScript

engine fails to maintain its security guarantees, a malicious website may be able to launch

attacks against the broader system. This thesis investigates attacks where the JavaScript

2 Chapter 1. Introduction

engine fails to maintain its security guarantees because the hardware itself failed to

maintain its security guarantees.

These attacks exploit optimisations in modern processors that enhance performance

by adapting to patterns observed in past program behaviour. These optimisations create

a �ow of information: from program behaviour to the processor’s internal state, and

subsequently to the execution time of future operations. Microarchitectural attacks

reverse this �ow by measuring a program execution time, which reveals constraints on the

processor’s internal state and, in turn, on the possible past behaviours of a victim program.

With enough constraints, an adversary can infer sensitive information processed by the

victim.

This thesis focuses on two types of microarchitectural attacks: cache timing attacks and

transient execution attacks. The �rst cache timing attack on browsers was demonstrated

by Oren et al. (2015), who adapted an earlier technique for recovering memory access

patterns in victim programs (Osvik et al., 2006; Liu et al., 2015) to the browser context.

They used this capability to detect network and mouse activity from other websites and

other programs running on the system.

The �rst transient execution attack was published by Kocher et al. (2019). They

demonstrated several techniques for manipulating branch prediction in modern processors

and showed how this ability could be used to recover sensitive information in various

scenarios. One such scenario involved bypassing a bounds check in the JavaScript engine

to trigger an out-of-bounds memory access.

These discoveries posed serious challenges for browser vendors, as the security of

browser isolation mechanisms assumed the hardware could maintain its security guaran-

tees. Both cache timing and transient execution attacks revealed that these guarantees are

not maintained in practice. In, response, browser vendors implemented countermeasures

to mitigate the threat of these attacks, including cross-origin isolation (MDN Contributors,

2024b,a) and site isolation (Reis et al., 2019).

Cross-origin isolation limits a website’s ability to simultaneously access high-

resolution timers and embed third-party content, e�ectively forcing malicious websites to

choose between embedding sensitive third-party content or executing cache attacks to

recover that content. Site isolation places each website in a separate process to mitigate

the threat of transient execution attacks. While transient execution attacks can still access

arbitrary process memory, the accesses remain con�ned to the isolated process.

1.1. Analysing Coarse-Grained Side-Channel Leakage 3

However, state-of-the-art attack techniques have progressed since the deployment of

these countermeasures, prompting the central question of this thesis:

Are cross-origin isolation and site isolation e�ective techniques to prevent state-of-the-
art microarchitectural attacks on browsers?

This thesis addresses that question by presenting several novel and practical attacks

that bypass these countermeasures to recover sensitive information from modern browsers.

The remainder of this chapter provides further introduction to each chapter of the thesis,

summarises its key contributions, and outlines its structure.

1.1 Analysing Coarse-Grained Side-Channel Leakage
A key challenge in mounting microarchitectural side channels is that they depend on

the precise behaviour of the microarchitecture, a behaviour that is rarely documented.

Therefore, researchers must rely on experimentation to gather data and construct theor-

etical models that align with the observed behaviour. The goal is that these models are

accurate enough to allow us to design e�ective countermeasures by accurately predicting

the behaviour of the microarchitecture under a variety of conditions.

This approach has proven remarkably e�ective when applied to individual microarchi-

tectural components, with successful attacks targeting memory caches Liu et al. (2015);

Osvik et al. (2006); Percival (2005); Yan et al. (2019); Yarom and Falkner (2014), branch

predictors Evtyushkin et al. (2016); Acıiçmez et al. (2007, 2006); Evtyushkin et al. (2018);

Zhang et al. (2020), translation lookaside bu�ers Gras et al. (2018); Koschel et al. (2020);

van Schaik et al. (2018), shared buses Paccagnella et al. (2021); Wan et al. (2022), execution

units Acıiçmez and Seifert (2007); Bhattacharyya et al. (2019); Aldaya et al. (2019), and

GPUs Wei et al. (2020); Naghibijouybari et al. (2018); Taneja et al. (2023); Cronin et al.

(2021); Owens and Wang (2011), However, this methodology becomes less e�ective when

analysing the behaviour of the system as a whole.

Beyond the inherent complexity of modelling an entire system, accurately attribut-

ing observed leakage to speci�c microarchitectural e�ects remains a major challenge.

This challenge is evident in three recent microarchitectural website-�ngerprinting at-

tacks: cache occupancy (Shusterman et al., 2019), loop counting (Cook et al., 2022), and

4 Chapter 1. Introduction

mwait (Zhang et al., 2023). These attacks identify websites based on site-speci�c patterns

in overall system performance. While their success demonstrates that the system leaks

information, pinpointing the exact source of the leakage has been a signi�cant challenge.

In particular, disagreement exists over the source of leakage observed in the cache

occupancy attack. Shusterman et al. (2019) attribute the leakage to cache contention,

while Cook et al. (2022) suggest interrupts cause the leakage. Which explanation, if any, is
correct?

Gülmezoglu (2021) proposes a method for attributing leakage to speci�c browser

behaviours. This approach involves instrumenting the browser to log its behaviour

and correlating these logs with microarchitectural activity using hardware performance

counters. A machine learning model is then trained to perform website �ngerprinting,

and explainable AI techniques are used to determine which browser behaviours most

in�uence the model predictions. While this method e�ectively links leakage to browser-

level activity, it does not clarify how information �ows through speci�c microarchitectural

channels – a critical detail for designing robust and e�ective countermeasures.

Cook et al. (2022) take a di�erent approach by controlling various microarchitectural

channels to manage leakage within the system. They conduct experiments across multiple

system con�gurations to determine which microarchitectural channels contribute to the

observed leakage. While this method helps identify contributing channels, limited control

leaves uncertainty about whether the detected leakage stems from controlled channels or

from uncontrolled leakage elsewhere.

Contributions. Chapter 3 introduces a methodology that addresses these gaps and

resolves the con�icting explanations for leakage in the cache occupancy attack.

The chapter begins by identifying four microarchitectural channels commonly dis-

cussed in the literature: contention for on-core resources, cache contention, interrupts,

and frequency scaling. It then demonstrates methods to control each of these channels,

resulting in the complete elimination of leakage for the loop counting and mwait prim-

itives, and a signi�cant reduction of leakage for the cache occupancy primitive. These

results indicate that the four channels comprehensively explain leakage in the loop count-

ing and mwait cases, while additional uncontrolled channels contribute to leakage in

the cache occupancy case. The chapter further investigates these uncontrolled channels

through experiments suggesting that the remaining leakage originates o�-core, likely

1.2. Mounting a High-Capacity Pixel-Stealing Attack 5

within components of the memory hierarchy (Paccagnella et al., 2021; Dai et al., 2022;

Wan et al., 2022; Pessl et al., 2016; van der Veen and Gras, 2023).

With comprehensive control established for the loop counting primitive, the chapter

proceeds to identify which of the four channels contribute to leakage. It demonstrates

that each channel independently provides enough information to mount a website �nger-

printing attack, indicating that models and countermeasures focusing on a single channel

are incomplete.

To present a more complete picture of leakage, the chapter concludes by quantifying

the relative contribution of each channel to the total observed leakage. This quanti�cation

is achieved by selecting hardware performance counters that correlate strongly with

leakage through speci�c channels and calculating their correlation with observations

from each primitive. The results reveal that the primary contributors to leakage are cache

contention for the cache occupancy primitive, frequency scaling for loop counting, and

interrupts for mwait, thereby resolving the con�icting explanations for leakage in the

cache occupancy attack.

1.2 Mounting a High-Capacity Pixel-Stealing Attack
Webpages often include content from multiple sources – the main webpage itself, links

highlighted based on the user browsing history, third-party advertisements, social media

widgets, and more. Browsers are responsible for rendering all this content as a seamless,

cohesive page without leaking sensitive information between the di�erent sources.

One of the key mechanisms browsers use to achieve this is the same-origin policy,

which restricts code from one website from accessing content belonging to another website,

even if both are embedded within the same webpage. Beyond controlling direct access,

browsers also control indirect access including controlling whether code can access the

composited output that is displayed to the screen.

Unfortunately, pixel-stealing attacks bypass this control to reveal sensitive information

displayed on webpages. Several studies have demonstrated how to reveal the colour of

selected pixels by measuring subtle di�erences in webpage rendering times (Stone, 2013;

Kotcher et al., 2013; Andrysco et al., 2015; Kohlbrenner and Shacham, 2017; Wang et al.,

2023; Taneja et al., 2023). By repeating this process with di�erent pixels, an adversary can

reconstruct arbitrary portions of the webpage.

6 Chapter 1. Introduction

A fundamental limitation of these attacks is their dependence on measuring the time

taken to render the webpage, which restricts the information extraction rate to the browser

rendering frequency – typically 60 times per second. Furthermore, browser vendors have

actively worked to eliminate these timing di�erences to mitigate previously published

attacks. Although recent studies have shown that CPU and GPU frequency scaling can be

exploited to conduct pixel-stealing attacks, these methods result in even lower leakage

rates (Wang et al., 2023; Taneja et al., 2023).

Beyond the limitations on the rate of information extraction, browser vendors have

widely deployed cross-origin isolation to mitigate a broad range of side-channel attacks.

Cross-origin isolation creates a mutually exclusive condition where a website must choose

between embedding content from other sources or accessing high-resolution timers. As

a result, a malicious website cannot simultaneously embed sensitive content and use

high-resolution timers to mount an attack to recover that content.

Contributions. Chapter 4 addresses the question: Are high-capacity pixel-stealing attacks
on modern browsers feasible? It presents Pixel Thief, a cache-based pixel-stealing attack

that bypasses the rate limit imposed by the browser rendering frequency.

Pixel Thief achieves this by observing data-dependent memory accesses within the

feComponentTransfer �lter. This �lter is applied to sensitive content, an action allowed

because the side e�ects of applying �lters are assumed to be unobservable. The �lter

uses the colour of each pixel in the sensitive content to access a table of colours. The

output of the �lter is ignored, but its memory accesses are observed using the Prime+
Probe technique. Each observed memory access reveals the colour of the pixel used to

perform the access. Since the �lter performs an access for each pixel, the colour of several

pixels can be leaked during a single invocation of the �lter. This decouples the leakage

rate of Pixel Thief from the browser rendering frequency and overcomes the limitations

that constrained previous attacks.

To measure �lter memory accesses with Prime+Probe, the chapter introduces a generic

technique to bypass cross-origin isolation. This technique splits the attack across two

webpages: the �rst embeds sensitive content, while the second uses high-resolution timers

to measure leakage from the �rst webpage.

The chapter concludes by presenting two end-to-end attacks to demonstrate the

e�ectiveness of Pixel Thief’s approach. The �rst adapts a method from Stone (2013)

to modern fonts to increase leakage rates by exploiting redundant information in text,

1.3. Mounting a Transient-Execution Attack on Modern Browsers 7

then uses this method to reveal the victim’s Wikipedia identity. The second abuses link

highlighting to construct an oracle that reveals whether the user previously visited a

speci�c URL, then queries the oracle with a large number of URLs to partially reconstruct

the victim’s browsing history.

1.3 Mounting a Transient-Execution Attack on Mod-
ern Browsers

The discovery of transient execution attacks sent shockwaves through the industry.

Browsers were particularly vulnerable, as they used software-based isolation techniques

to separate content rendered onto the same webpage. Unfortunately, transient execution

attacks bypass many software-based techniques by enabling adversaries to transiently

execute code before critical security requirements are veri�ed.

In response, Google deployed site isolation for the Chrome browser (Reis et al., 2019).

This countermeasure separates content from di�erent origins into separate processes.

While it does not prevent transient execution attacks from accessing arbitrary memory

within a process, it mitigates the threat of transient execution attacks by leveraging

process isolation guarantees provided by the hardware.

Beyond hardware-based isolation, Chrome employs pointer compression, representing

each pointer as a 32-bit o�set from a base address. This reduction in pointer size saves

memory but also restricts the memory accessible to each pointer. Chrome leverages

this limitation, combined with a specialised allocator, to partition the address space and

con�ne out-of-bounds memory accesses.

Contributions. Chapter 5 addresses the question: Are practical transient-execution attacks
on modern browsers feasible? The chapter presents Spook.js, a transient-execution attack

capable of extracting sensitive information despite the countermeasures deployed by

Chrome.

The chapter begins by highlighting a gap between policies used by the browser

to de�ne the security boundaries between websites. Typically, the same-origin policy

de�nes the boundary between two websites and is often the boundary developers consider

when designing websites. Site isolation, however, uses the same-site policy to de�ne the

boundary between two websites. This gap creates a scenario where websites considered

8 Chapter 1. Introduction

distinct by developers are combined into the same process undermining site isolations

security bene�ts.

To bypass Chrome’s address space partitioning and access memory from other websites,

the chapter demonstrates a type-confusion attack which tricks Chrome into accessing a

malicious object as a typed array. Since typed arrays can be shared between webpages,

Chrome allocates them outside of any speci�c partition and uses a full-sized pointer to

refer to the contents of the typed array. Spook.js crafts a malicious object that takes

control over this pointer to access memory anywhere in the process.

To demonstrate the practicality of Spook.js, the chapter presents several attack scen-

arios grouped by adversarial capabilities. First, scenarios where the adversary controls a

webpage (e.g., a user homepage) and recovers sensitive content displayed on the same

site. Next, scenarios where the adversary uploads content to a cloud service and retrieves

other user data stored on that service. Finally, scenarios where the adversary installs a

malicious extension on the victim’s browser and extract data stored in other extensions.

The chapter concludes by revealing that other browsers, particularly Chrome-based

browsers such as Chromium, Brave, and Edge, are also vulnerable to Spook.js with minimal

adaptation.

1.4 Transient-Execution Attacks on Security Type Sys-
tems

Cryptographic constant-time programming is a widely used technique to mitigate side-

channel attacks. It involves transforming a program so that its observable behaviour

remains consistent regardless of any secret data. Typically, this transformation is per-

formed manually, which can be both time-consuming and error-prone

One way to automate this process is through the use of a security type system, a

programming language feature that enables developers to annotate variables in their

programs with secret or public labels. Tools such as the FaCT compiler (Cauligi et al.,

2019) then use type checking and information-�ow analysis to ensure data stored within

secret variables can never leak into public variables.

While this approach is e�ective, it can be overly restrictive. It prohibits any side e�ect

from depending on secret variables, even when such dependencies are intentional and

1.5. Summary of Contributions 9

do not pose a security risk. Consider, for example, an encrypted messaging application.

Encryption takes a message and a key as inputs, both of which are stored in secret variables

to protect their integrity. The output is an encrypted message and is safe to reveal. It is

stored in a public variable so that it can be sent over the network. However, because the

encrypted message is derived from the secret key and message, the compiler will reject

the program.

A common solution to this problem is to introduce a declassify operation. This

operation serves as an annotation inserted by the developer to assert that a value obtained

from a secret variable is safe to reveal. In the example above, the developer would insert a

declassify operation after encrypting the message so that it can be sent over the network.

Contributions. Chapter 6 addresses the question: Can values in secret variables uninten-
tionally leak even when declassi�cation is applied correctly? .

The chapter answers the question in the negative, demonstrating a PoC attack on

several implementations of AES, including industry-standard versions and those protected

by the FaCT compiler. The attack exploits branch prediction and out-of-order execution in

modern processors to coerce the processor into declassifying an output before encryption

is correctly applied. Since the output is declassi�ed, the compiler allows it to be revealed.

The chapter provides details for the PoC attack while the accompanying paper (Shiv-

akumar et al., 2023) provides the full theoretical analysis, methods to recover the key from

recovered ciphertexts, and proposed countermeasures to mitigate the issue.

1.5 Summary of Contributions
In summary, the contributions of this thesis are as follows:

Analysing Coarse-Grained Website-Fingerprinting

• Describes how to control microarchitectural channels to eliminate leakage (Sec-

tion 3.2).

• Establishes that all identi�ed channels contribute to website �ngerprinting attacks

(Section 3.3).

10 Chapter 1. Introduction

• Quanti�es leakage through each channel across multiple website �nger printing

attacks (Section 3.4).

Mounting a High-Capacity Pixel-Stealing Attack

• Develops a simple method to bypass cross-origin isolation, enabling the use of

high-resolution timers alongside embedded third-party content (Section 4.1).

• Introduces Pixel Thief, a cache-based pixel-stealing attack that exploits content-

dependent memory access patterns in the feComponentTransfer SVG �lter to

achieve data extraction rates exceeding the browser rendering frequency (Sec-

tions 4.2 and 4.3).

• Adapts techniques for rapid text recovery using pixel stealing (Section 4.4).

• Demonstrates a fast history-sni�ng attack leveraging cache-based pixel stealing

(Section 4.5).

Mounting a Transient-Execution Attack on Modern Browsers

• Introduces Spook.js, a transient memory-disclosure attack capable of reading arbit-

rary memory within rendering processes (Section 5.1).

• Examines the limitations of site isolation and identi�es conditions under which

multiple websites are consolidated into the same process (Section 5.2).

• Investigates the security implications of Spook.js on Chrome extensions (Section 5.3).

• Con�rms that other Chromium-based browsers, including Microsoft Edge and Brave,

are also vulnerable to Spook.js (Section 5.4).

Transient-Execution Attacks on Security Type Systems

• Demonstrates PoC attacks on protected implementations of AES (Chapter 6).

Open Source Code Releases
As part of this thesis, the following open-source code releases have been made:

1.6. Structure of Thesis 11

• https://github.com/0xADE1A1DE/PixelThief

• https://github.com/spookjs/ spookjs-poc

1.6 Structure of Thesis

Chapter 2 – Background – provides the essential background on microarchitectural attacks.

It o�ers a general overview of the behaviour of key microarchitectural components,

explains how measurement primitives exploit this behaviour to extract information,

reviews the history of attacks based on these primitives, and discusses various browser

features relevant to each attack.

Chapter 3 – Analysing Coarse-Grained Side-Channel Leakage – presents and evaluates a

methodology for investigating leakage in coarse-grained side channels.

This chapter has not yet been published. In this work, I developed the approach to

control channels and eliminate leakage, designed the method to establish leakage through

each channel, and supervised experiments conducted by a co-author.

Chapter 4 – Mounting a High-Capacity PIxel Stealing Attack on Modern Browsers –

presents and evaluates a practical, high-capacity attack that recovers portions of rendered

webpages.

This chapter is based on the following publication: Sioli O’Connell, Lishay Aben Sour,

Ron Magen, Daniel Genkin, Yossi Oren, Hovav Shacham, and Yuval Yarom – “Pixel Thief:

Exploiting SVG Filter Leakage in Firefox and Chrome”, USENIX Security 2024.

In this work, I developed the architecture to bypass cross-origin isolation, identi�ed

data-dependent behaviours in SVG �lters, and designed and implemented Pixel Thief to

exploit these behaviours. I also designed the text-stealing attack, supervised its imple-

mentation by a co-author, and designed and implemented the history-sni�ng attack.

Chapter 5 – Mounting a Transient Execution Attack on Modern Browsers – demonstrates

the �rst practical transient execution attack on browsers and evaluates it under several

attack scenarios.

https://github.com/0xADE1A1DE/PixelThief
https://github.com/spookjs/spookjs-poc

12 Chapter 1. Introduction

This chapter is based on the following publication: Ayush Agarwal, Sioli O’Connell,

Jason Kim, Shaked Yehezkel, Daniel Genkin, Eyal Ronen, and Yuval Yarom – “Spook.js:

Attacking Chrome Strict Site Isolation via Speculative Execution”, IEEE SP 2022.

In this work, I designed and implemented the Spook.js attack, including using type con-

fusion to break out of Chrome’s partitioned address spaces, identifying suitable malicious

objects, preventing deoptimisation through nested speculation, widening the speculation

window via last-level cache evictions, and porting Spook.js to other Chromium-based

browsers.

Chapter 6 – Declassi�cation and Transient Execution – explores the interaction between

security type systems and transient execution.

This chapter has been published as Basavesh Ammanaghatta Shivakumar, Jack

Barnes, Gilles Barthe, Sunjay Cauligi, Chitchanok Chuengsatiansup, Daniel Genkin, Sioli

O’Connell, Peter Schwabe, Rui Qi Sim, and Yuval Yarom – “Spectre Declassi�ed: Reading

from the Right Place at the Wrong Time”, IEEE SP 2023.

In this work, I developed the PoC attack used to extract partial ciphertexts from

OpenSSL and FaCT implementations of AES.

Chapter 7 – Conclusions – summarises the results, discusses their implications for browser

security, and outlines directions for future research.

1.6.1 Other Publications
The main body of this thesis includes publications to which I made signi�cant contributions.

Other publications in which my role was more limited are have been published as follows:

Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin, Yossi Oren, and

Yuval Yarom – “Prime+Probe 1, Java-Script 0: Overcoming Browser-based Side-Channel

Defenses”, USENIX Security 2021.

Zhiyuan Zhang, Mingtian Tao, Sioli O’Connell, Chitchanok Chuengsatiansup, Daniel

Genkin, and Yuval Yarom – “BunnyHop: Exploiting the Instruction Prefetcher”, USENIX

Security 2023.

Bradley Morgan, Gal Horowitz, Sioli O’Connell, Stephan van Schaik, Chitchanok Chueng-

satiansup, Daniel Genkin, Olaf Maennel, Paul Montague, Eyal Ronen, and Yuval Yarom –

1.6. Structure of Thesis 13

“Slice+Slice Baby: Generating Last-Level Cache Eviction Sets in the Blink of an Eye”, IEEE

SP 2025.

15

Chapter 2

Background

This chapter provides essential background for the rest of the thesis. It is divided into

four sections, the �rst two detail the internal behaviour of processors and techniques that

exploit these behaviours to measure internal processor state, while the last two focus on

relevant features of web browsers and browser-based attacks.

2.1 Microarchitecture
The microarchitecture refers to the internal design of a processor that determines how it

executes instructions. It includes components such as caches, bu�ers, pipelines, execution

units, interconnects, and other internal structures. While processors may share the same

Instruction Set Architecture (the interface between the hardware and software), their

microarchitectures can di�er signi�cantly.

Unfortunately, processor vendors rarely publish detailed documentation of microar-

chitectural behaviour, which has led various research communities to reverse-engineer

these details to better understand how microarchitectures operate. The rest of this section

provides a concise overview of modern processor microarchitectural behaviours relevant

to this thesis.

2.1.1 Memory Caches
Modern processors use a cache – small, fast memory located directly on the processor –

to reduce the average latency of memory accesses. This improvement is achieved partly

16 Chapter 2. Background

through physical proximity and partly because caches are optimised for low latency at

the expense of data density and power e�ciency. The processor stores recently accessed

data in the cache under the assumption that this data will be reused. When the data is

accessed again, the lower latency of the cache results in faster access times, leading to

overall performance improvements.

Structure. The cache is organised as a set-associative structure, consisting of multiple

sets, each containing multiple ways. The processor divides memory into �xed-length units

called cache lines, which are stored in the cache. Each cache line can only be stored in

a single set, determined uniquely by the address of the line, but it can occupy any way

within that set. To identify which line is stored in each way, the cache stores the line

address (or tag) alongside the data. When the processor performs a memory access, it

uses the memory address to determine the set to search, then searches each way for a

matching address. If a match is found, the access is a cache hit, and the data from that

way is returned. If no match is found, the access is a cache miss, and the processor instead

retrieves the data from system memory or a higher-level cache.

Hierarchy. Modern caches are not only set-associative but also organised into a hierarchy.

Lower-level caches (closer to the processor cores) typically have lower latency at the

expense of a smaller capacity, while higher-level caches have larger capacity at the

expense of a higher latency. Usually, the last-level cache is shared among all processor

cores, whereas the lower-level caches are private to each core.

Inclusivity. Some caches are inclusive, meaning that lower-level caches contain a strict

subset of the data stored in higher-level caches. That is, any data present in an inclusive

lower-level cache must also be present in higher-level caches. The processor maintains

this inclusive property by ensuring that when data is evicted from a higher-level cache,

all-inclusive lower-level caches also evict that data.

Other caches exhibit an exclusive property, where lower-level caches do not contain

any data that is also stored in higher-level caches. In this con�guration, when data is

moved from a higher-level cache to an exclusive lower-level cache, the processor preserves

exclusivity by evicting the data from the higher-level cache. Consequently, each piece of

data exists in only one level of the cache hierarchy at a time.

Caches that are neither inclusive nor exclusive are referred to as non-inclusive. Like

2.1. Microarchitecture 17

inclusive caches, data copied to a non-inclusive lower-level cache is retained in the higher-

level caches. However, unlike inclusive caches, when data is evicted from the higher-level

caches, non-inclusive lower-level caches will continue to retain a copy of the data.

Replacement Policy. Since sets have a �xed number of ways, they can become full.

When the processor needs to store a new line in a full set, it makes room in the set by

evicting another line and storing that line back in system memory. The line selected

for eviction is determined by the cache replacement policy. A commonly used policy

is the pseudo-least-recently-used (pLRU) policy, which approximates the behaviour of

a true least-recently-used (LRU) policy while requiring fewer resources than a faithful

implementation.

2.1.2 Execution
To improve performance, modern processors employ both out-of-order execution and

superscalar execution. Out-of-order execution allows the processor to execute instructions

as soon as their dependencies are resolved, rather than strictly following the original

program order. Superscalar execution enables each core within the processor to execute

multiple instructions in parallel, rather than processing one instruction at a time. Together,

these features enhance performance by allowing the processor to hide execution delays

and keep its execution units busy with independent instructions.

Branch Prediction. Branches limit the e�ectiveness of superscalar out-of-order execu-

tion because the outcome of a branch determines which instructions should be executed

next. As a result, all future instructions become implicitly dependent on the branch

condition, preventing their execution until the condition is known. Processors remove

this implicit dependency by predicting the branch outcome and executing the program

under the assumption the prediction is correct. When program execution matches the

prediction, the processor saves time since it did not have to wait for the branch condition.

In cases where program execution does not match the prediction, the processor is said to

have mispredicted. To correct the mispredicted branch, the processor ‘squashes’ (discards)

program execution following the branch, then restarts execution with the correct branch

outcome.

18 Chapter 2. Background

2.2 Microarchitectural Attacks
Microarchitectural side-channel attacks exploit the behaviour of the microarchitecture to

extract sensitive information from other processes running on the same machine. These

attacks leverage unintended links between program secrets and the program’s internal

behaviour. By observing that behaviour – typically through measurements of contention

on shared microarchitectural resources – an attacker can infer those secrets.

In its simplest form, an attack might involve timing how fast a loop executes (Cook

et al., 2022). However, often attacks exploit the nuanced behaviour of individual microar-

chitectural components to induce contention at �ner granularities, thereby revealing more

detailed information. Research has demonstrated that the behaviour of many microarchi-

tectural components can be exploited to mount side-channel attacks. These components

include memory caches Liu et al. (2015); Osvik et al. (2006); Percival (2005); Yan et al.

(2019); Yarom and Falkner (2014), branch predictors Evtyushkin et al. (2016); Acıiçmez et al.

(2007, 2006); Evtyushkin et al. (2018); Zhang et al. (2020), translation lookaside bu�ers Gras

et al. (2018); Koschel et al. (2020); van Schaik et al. (2018), shared buses Paccagnella et al.

(2021); Wan et al. (2022), execution units Acıiçmez and Seifert (2007); Bhattacharyya et al.

(2019); Aldaya et al. (2019), or GPUs Wei et al. (2020); Naghibijouybari et al. (2018); Taneja

et al. (2023); Cronin et al. (2021); Owens and Wang (2011). The remainder of this section

provides background on the techniques used to mount the attacks described in this thesis,

along with a brief overview of transient-execution attacks.

2.2.1 Cache Timing Attacks
The fundamental idea behind a cache timing attack is that an adversary can infer whether

a speci�c piece of memory is present in the cache by measuring the time it takes to access

that memory. Fast access times (typically under a hundred CPU cycles) suggest that the

data was served from the cache, meaning the memory was present in the cache at the

time of access. Conversely, slower access times suggest that the memory was not cached

and had to be fetched from a higher level of the memory hierarchy.

On the surface, revealing whether memory is cached does not appear to expose

sensitive information. However, cache state is in�uenced by memory accesses made by all

programs running on the machine and the patterns of those memory accesses are often

2.2. Microarchitectural Attacks 19

correlated with sensitive information. By measuring cache state, a cache timing attack can

partially reveal these memory access patterns and, in turn, reveal sensitive information.

This thesis mainly employs the Flush+Reload and Prime+Probe techniques to measure

memory access patterns. In both techniques, one party accesses memory (the victim),

while the other attempts to detect these accesses (the adversary). Although these roles

are traditionally referred to as ‘victim’ and ‘adversary’ in the literature, this thesis adopts

alternative terminology: accessor and observer. This naming scheme is chosen to emphas-

ise the broader applicability of these techniques beyond conventional cross-process attack

scenarios. For example, the techniques can be used in reverse engineering, in situations

where the accessor and observer are components of the same program, or as building

blocks within larger attacks where both roles are performed by the adversary.

Flush+Reload. In the Flush+Reload technique (Gullasch et al., 2011; Yarom and Falkner,

2014) the observer starts by �ushing the target memory from the cache. The accessor is

then allowed to execute, potentially accessing the target memory. After a short interval,

typically a few thousand processor cycles, the observer measures the time it takes to

access the target memory. Fast access times indicate the memory is stored in the cache,

while slower access times suggests absence from the cache.

The primary advantage of Flush+Reload is its ease of use and low noise levels. How-

ever, its main limitation is that the accessor and observer must share memory; more

precisely, the observer must be able to access the same memory used by the accessor. This

requirement signi�cantly restricts Flush+Reload’s applicability in adversarial settings

simply because the adversary is often unable to access the target memory. Moreover,

Flush+Reload depends on speci�c instructions to evict memory from the cache, further

limiting its use to cases where the adversary can execute arbitrary instructions.

Prime+Probe. The Prime+Probe technique (Osvik et al., 2006; Liu et al., 2015) overcomes

the limitations of Flush+Reload by exploiting contention within cache sets. The observer

starts by �lling every way of a target cache set with ‘junk’ data. After the accessor runs,

the observer measures the time it takes to access this junk data again. A longer access

time indicates that the junk data was likely evicted from the cache, likely because the

processor removed it to make room for data accessed by the accessor, causing the access

to be served from slower system memory.

The primary advantages of Prime+Probe are that the observer does not need to share

20 Chapter 2. Background

memory with the accessor and does not require special instructions. However, there are

two signi�cant challenges to e�ectively using Prime+Probe.

The �rst challenge is identifying which junk data to access, known as the (minimal)

eviction set. The eviction set consists of enough memory to �ll a target cache set – no

more, no less. Throughout this thesis, we rely on the excellent method developed by Vila

et al. (2019) to �nd eviction sets.

The second challenge is locating the target cache set to �ll, the speci�c set that serves

memory to the accessor. Typically, the observer employs a brute-force approach: building

an eviction set for each cache set and then using an attack-speci�c detection method to

determine whether accesses to a given eviction set collide with the accessor’s accesses.

Beyond these challenges, Prime+Probe is slower than Flush+Reload because it needs

to access an entire eviction set, whereas Flush+Reload only needs to access a single piece

of memory. In addition, Prime+Probe yields less precise information than Flush+Reload,

as it detects contention caused by any memory access served from the target cache set,

not just the speci�c memory location of interest.

2.2.2 Transient-Execution Attacks
Transient-execution attacks are microarchitectural attacks that exploit the execution of

instructions that may later be squashed. In these attacks, the adversary tricks the processor

into executing the program incorrectly, causing behaviour that deviates from the original

program. This often includes accessing memory the program normally would not be able

to access. Although the processor eventually squashes the architectural state associated

with this incorrect execution, there is often a delay between incorrectly executing an

instruction and squashing its e�ects. This delay is called the speculation window and it

enables an adversary to execute code while the program is in an invalid state. Because the

hardware does not revert all microarchitectural state, the adversary can use the speculation

window to encode secrets into the microarchitectural state, then later recover those secrets

by measuring residual microarchitectural state.

Inducing Branch Mispredicitons. This thesis mainly focuses on incorrect program

execution caused by branch mispredictions. The technique was �rst described by Kocher

et al. (2019), in which the adversary trains a target branch by repeatedly causing it to be

taken. When the processor encounters the same branch in the future, it will predict that

2.3. Browsers 21

the branch will be taken. After this training step, the adversary moves to an attack step

where they provide a malicious input. This input would cause the branch to be not taken,

but because the processor predicted the branch as taken, it proceeds to take the branch

anyway.

Consider, for example, a program that uses a branch to guard an access into an

array. Under normal execution, whenever the access is performed the branch veri�ed

the provided index was within bounds. However, in a transient-execution attack, this

assumption does not hold. The adversary can supply an out-of-bounds index and induce

the processor to take the branch. The processor then executes the subsequent instructions,

performing an out-of-bounds access reading arbitrary process memory.

Although the processor eventually squashes this incorrect speculative execution, the

adversary can still leak the secret through a side channel. Commonly, secrets are leaked

through the cache due to well-understood behaviour and numerous established attack

techniques.

2.3 Browsers
A web browser is a piece of software that allows users to access and interact with the

World Wide Web. Its primary function is to render websites so users can view and engage

with their content. Websites consist of various resources identi�ed by a Uniform Resource

Locator (URL). To retrieve a resource, the browser connects to a server speci�ed by the

URL hostname and port number, then requests the resource using the Hypertext Transfer

Protocol (HTTP), referencing the URL path. Some of these resources are webpages, �les

written in Hypertext Markup Language (HTML) that de�ne the page structure, content,

and visual appearance.

2.3.1 Same-Site Policy
When two resources interact, the web browser consults a security policy to determine

whether the interaction is permitted. Commonly, the browser enforces the same-origin

policy, which allows interaction only when the resources share the same origin – de�ned

by the domain name, protocol (such as HTTP or HTTPS), and port number of the server.

22 Chapter 2. Background

Notably, the entire domain is considered. For example, foo.example.com and bar.
example.com are di�erent origins because their subdomains, foo and bar, are di�erent.

Websites can opt into di�erent security policies, usually via HTTP Headers – metadata

sent along with each resource. One such policy is the same-site policy, which permits

interaction between resources served from the same site. Unlike the same-origin policy,

the same-site policy considers only the �nal portion of the domain.

Speci�cally, the same-site policy considers the E�ective Top-Level Domain Plus One

(eTLD+1). The Top-Level Domain refers to the �nal portion of a domain under which

websites can be registered (e.g., .com.au or .net). The E�ective Top-Level Domain includes

domains that allow others to register subdomains (e.g., .github.io or .canva.site). The

E�ective Top-Level Domain Plus One refers to the domain immediately preceding the

e�ective top-level domain, the part registered by website owners (e.g., example.com or

example.github.io).

2.3.2 JavaScript
To enable rich interactive applications, webpages can reference executable resources that

browsers download and run on the user’s device. These executable resources are typically

written in JavaScript – a high-level, dynamically typed, object-oriented programming

language featuring prototypal inheritance.

Objects. Objects are mutable, user-de�ned collections of properties. Each property has a

name, which must be a string or a symbol, and a value, which can be of any type, including

another object. Properties can be added, modi�ed, or removed after the object is created.

Objects inherit behaviour in JavaScript through prototypal inheritance. Each object

has a special property called its prototype. When a property is accessed on an object but

is not found, the JavaScript engine looks for that property on the object prototype instead.

Since the prototype may be an object too, the JavaScript engine repeats this process until

either the property is found or until there are no more prototypes to check.

Dynamic Typing and Speculative Optimisations. In JavaScript, variables do not have

�xed types. Instead, any value of any type can be assigned to any variable, even if that

variable previously held a value of a di�erent type. JavaScript engines reduce the cost

of this dynamic behaviour by employing speculative optimisations (Meurer, 2017) which

optimise the code under the assumption that variables only store one type of value. This

2.3. Browsers 23

optimisation commonly occurs at the function level, where the engine records argument

types each time the function is called. After several calls, the engine uses this recorded

type information to generate optimised machine code for the function. However, since

future arguments may have di�erent types, the engine inserts checks to verify that the

actual argument types match the speculated types. If the types do not match, the engine

will discard the optimised code and fall back to a more generic, slower implementation.

Hidden Classes. In addition to the challenges of dynamic typing, objects pose their

own challenge since properties can be dynamically added or removed. JavaScript engines

typically use hashmaps to support this dynamic behaviour, but each property lookup

becomes an expensive hashmap lookup. To reduce this overhead, JavaScript engines use

hidden classes to create a static layout for object properties then cache property lookups

as a speculative optimisation (Deutsch and Schi�man, 1984; Chambers et al., 1989; Hölzle

et al., 1991).

Hidden classes store properties in two data structures – an array holding the property

values and a hashmap mapping properties to their corresponding locations within the

array. When a property is added to a hidden class, the engine appends the property

value to the end of the array and updates the hashmap to map the property name to the

corresponding array location. When looking up a property, whether to read or modify

it, the engine uses the hashmap to �nd the location of the property value in the array.

Although this approach still requires a hashmap lookup, the location of the property is

shared between all objects with the same hidden class, which enables the engine to cache

the lookup as a speculative optimisation.

2.3.3 Browser Architecture
Modern web use often involves visiting multiple webpages simultaneously, each in its

own window or tab. Historically, browsers employed a monolithic single-process archi-

tecture that handled all browser functions within one process. This architecture is simple,

but it su�ers from security and stability issues. For example, if a webpage causes the

browser to crash, the entire browser crashes a�ecting unrelated webpages. Likewise,

if a malicious webpage exploits a vulnerability in the browser, then the entire browser

becomes compromised.

24 Chapter 2. Background

To address this issue, browser vendors adopted a multi-process architecture consisting

of several renderer processes and a single compositor process (Reis et al., 2009; Nguyen,

2017). If a webpage causes the browser to crash, only the a�ected renderer process crashes

while the rest of the browser continues una�ected. Similarly, if a malicious webpage

exploits a vulnerability, only the a�ected renderer process becomes compromised.

Partitions in Chrome. To reduce the memory footprint of renderer processes, the

Chrome browser compresses pointers by representing them as 32-bit o�sets from a �xed

base address (Sheludko and Solanes, 2020). This base address de�nes an isolate within

which memory is allocated. Because pointers are represented as 32-bit o�sets, instead of

a full 64-bit address, the amount of memory accessible to each pointer is limited. Chrome

leverages this limitation as a security feature by carefully arranging the address space so

that memory accesses through compressed pointers are constrained to their respective

isolate.

2.3.4 Uint8Array

Typed arrays are a collection of standard objects that enable developers to directly access

and manipulate raw binary data using JavaScript. All typed array data is stored within an

ArrayBuffer or a SharedArrayBuffer. These bu�er objects do not provide an interface

for direct data access; instead, one or more typed array views can be instantiated over

the bu�er to provide an array-like interface. For example, a Uint8Array exposes its

underlying bu�er as an array of 8-bit unsigned integer values.

Whenever a JavaScript program accesses a typed array, the engine �rst veri�es that

the index is valid – speci�cally, that the index is an integer greater than or equal to zero

and less than the array length. If the index is invalid, the engine does not perform any

memory access.

Implementation in Chrome. In Chrome, typed arrays contain four key �elds: the

type, a pointer to the underlying bu�er, the length of the underlying bu�er, and an o�set

into the underlying bu�er (used to implement zero-copy slice operations). To support

inexpensive moving and sharing of typed arrays between webpages and JavaScript threads,

the underlying bu�er is allocated at an arbitrary address outside of any given isolate.

Consequently, references to the underlying array bu�er are represented as full-sized

2.4. Browser-Based Attacks 25

pointers. Figure 2.1 illustrates the memory layout for Uint8Array’s implemented in

Chrome.

header

...

pointer

... 1 2 3 4

buffer

JavaScript Partition Heap

Figure 2.1: Uint8Array Memory Layout:
A Uint8Array containing the values 1, 2, 3, 4. Ticks denote the boundaries

of �elds, rectangles within each �eld denote a byte, and colours are used to

highlight where memory is allocated.

2.4 Browser-Based Attacks
Web browsers are commonly targeted owing to the popularity of the web as a platform

and the ease with which an adversary can execute code on a victim’s device. Once an

adversary tricks a victim into visiting a malicious website, through phishing, malicious

advertisements, or other means, they gain the ability to execute code on the victim’s

device. From there, the adversary can mount a variety of attacks against other open

webpages, the browser itself, or the underlying system. Of particular interest to this thesis

are microarchitectural attacks launched from the browser (Oren et al., 2015; Shusterman

et al., 2019, 2021; Andrysco et al., 2015, 2018). This section provides a brief introduction

to website-�ngerprinting, history-sni�ng, and pixel-stealing attacks.

2.4.1 Website-Fingerprinting Attacks
In a website-�ngerprinting attack, the adversary attempts to uncover the identity of a

website visited by the victim. There are two broad attack models for website-�ngerprinting

attacks: the on-path and co-located models.

26 Chapter 2. Background

In the more conventional on-path model, the adversary mounts their attack from

a separate machine located somewhere along the communication path between the

victim and the wider internet (Hintz, 2002; Herrmann et al., 2009; Panchenko et al., 2011;

Cai et al., 2012; Gong et al., 2012; Wang and Goldberg, 2013; Juarez et al., 2014; Hayes

and Danezis, 2016; Panchenko et al., 2016; Rimmer et al., 2018; Jansen et al., 2018; Li

et al., 2018). This position enables the adversary to monitor network packets sent to

and from the victim. Since the contents of each packet are assumed to be encrypted,

the adversary is limited to only using packet size and the timing between packets to

�ngerprint a website. Consequently, countermeasures against on-path attacks typically

focus on injecting random delays or spurious tra�c to mask these patterns.

Under the co-located model, the adversary mounts their attack directly from the

victim device. This position enables the adversary to indirectly monitor the browser

behaviour through side channels including microarchitectural side channels (Oren et al.,

2015; Shusterman et al., 2021, 2019; Cronin et al., 2021; Naghibijouybari et al., 2018; Taneja

et al., 2023; Cronin et al., 2021).

In either model, the adversary samples browser behaviour over time to construct a

�ngerprint then matches it with previously recorded �ngerprints to identify the website.

2.4.2 History Sni�ng Attacks
In a history-sni�ng attack, the adversary aims to reveal the victim’s browsing history.

The de�ning characteristic of this attack is that the adversary cannot directly access the

history itself. Instead, they rely on an oracle that reveals whether a given URL exists in

the victim’s browsing history then they query the oracle with a large number of URLs to

partially reconstruct the victim’s browsing history.

Many history-sni�ng attacks exploit the :visited CSS selector, a usability feature

in browsers that allows pages to change the style of visited links. Using this method, the

adversary creates a page containing multiple links with URLs they wish to query. The

adversary then checks which links have been styled to reveal which URLs have been

visited by the victim. Early attacks could directly read which styles were applied to a

link or could use styles that would alter the page layout to indirectly reveal whether the

style had been applied (Smith et al., 2018; Janc and Olejnik, 2010). In response, browser

vendors deployed countermeasures that remove di�erences between visited and unvisited

2.4. Browser-Based Attacks 27

link styles. Speci�cally, whenever a website attempts to query the browser, the browser

will always behave as though the URL is unvisited. In cases where the style makes this

impossible, the browser will simply refuse to apply the style at all.

More recent history-sni�ng attacks have bypassed these countermeasures by exploit-

ing timing side channels. Speci�cally, the adversary creates a style that is computationally

expensive for the browser to apply and uses the :visited selector to apply this style. By

monitoring for performance degradation, the adversary can infer whether the style was

applied (Smith et al., 2018). In response, browser vendors further restricted allowed styles

to a limited set believed to have low performance overhead, such as changing the text

colour or background colour of links (MDN Contributors, b).

2.4.3 Pixel-Stealing Attacks
Pixel-stealing attacks are timing attacks that induce data-dependent delays in browser

rendering to reveal sensitive information displayed on the screen. These attacks apply a

malicious style, designed to be expensive to compute for certain colours but cheap for

others, to an HTML element to create a delay dependent on the element colour. If the

di�erence in computation time is large enough, the browser misses the deadline to render

the next frame, an event that an attack can detect to reveal the original element colour.

SVG Filters. Attacks typically use SVG �lters to create computationally expensive styles.

These �lters are small user-de�ned functions (originally speci�ed by the SVG standard) that

are intended to enable artistic e�ects, such as blurring, which are di�cult or impossible to

achieve with standard HTML and CSS alone. Filters are composed of several �lter elements,

primitive operations that the webpage provides parameters for, that are combined together

to form a complete �lter. The list of �lter elements is speci�ed by the SVG standard

and includes several standard image �ltering operations such as colour mapping and

convolutions.

Listing 2.1 demonstrates how to apply a �lter to a div element. Lines 3-8 de�ne an

SVG object. Inside the object, Lines 4-7 de�ne the �lter. This �lter consists of two elements

executed sequentially: A Gaussian blur (Line 5) and image dilation (Line 6). Finally, Line 11

applies the �lter to the target div element.

Stealing Cross-Origin Content. Filters can be applied to cross-origin content to allow

designers to create webpages with cohesive �ltered appearances. This is assumed to

28 Chapter 2. Background

1 <html>
2 <head>
3 <svg><defs>
4 <filter id="filter_id">
5 <feGaussianBlur stdDeviation="1" />
6 <feMorphology operator="dilate" radius="2" />
7 </filter>
8 </defs></svg>
9 </head>

10 <body>
11 <div style="filter: url(#filter_id)"><!-- content --> </div>
12 </body>
13 </html>

Listing 2.1: SVG Filter Example:
A demonstration of how to de�ne an SVG �lter and apply it to a speci�c

element on a webpage.

be safe because the browser restricts access to the output of the �lter. Unfortunately,

the presence of side-channels invalidates this assumption and enables adversaries to

recover cross-origin content. Previous studies has demonstrated how di�erences caused

by algorithmic optimisations in SVG �lters (Stone, 2013; Kotcher et al., 2013), computations

on subnormal �oating-point numbers (Andrysco et al., 2015; Kohlbrenner and Shacham,

2017), and frequency scaling in modern CPUs and GPUs (Wang et al., 2023; Taneja et al.,

2023) can be exploited to mount pixel-stealing attacks.

29

Chapter 3

Attributing Microarchitectural
Leakage within Systems

Several approaches exist for analysing microarchitectural side-channel leakage, with

the most common method being to reverse-engineer a model of the behaviour of a

speci�c hardware component and then develop an attack that exploits that behaviour.

The successful execution of the attack is taken as evidence that the reverse engineering is

accurate, and the resulting model is used to provide insight into the leakage. Many studies

have employed this approach for various components, including memory caches (Liu

et al., 2015; Osvik et al., 2006; Percival, 2005; Yan et al., 2019; Yarom and Falkner, 2014),

branch predictors (Evtyushkin et al., 2016; Acıiçmez et al., 2007, 2006; Evtyushkin et al.,

2018; Zhang et al., 2020), translation lookaside bu�ers (Gras et al., 2018; Koschel et al.,

2020; van Schaik et al., 2018), shared buses (Paccagnella et al., 2021; Wan et al., 2022),

execution units (Acıiçmez and Seifert, 2007; Bhattacharyya et al., 2019; Aldaya et al., 2019),

and GPUs (Wei et al., 2020; Naghibijouybari et al., 2018; Taneja et al., 2023; Cronin et al.,

2021; Owens and Wang, 2011).

This approach works well when analysing information leakage from speci�c compon-

ents; however, it is less suited to analysing coarse-grained leakage. Such leakage occurs in

attacks that monitor the system over extended periods of time or monitor large portions

of the microarchitectural state. In either case, it can be di�cult to attribute leakage to any

singular microarchitectural e�ect. The challenge is further compounded by the use of

machine learning classi�ers to extract information, as it further obscures which factors

contributed to a successful attack.

As an example of this challenge, consider the cache-occupancy website-�ngerprinting

30 Chapter 3. Attributing Microarchitectural Leakage within Systems

attack. In this attack, the adversary measures the speed at which they can repeatedly

iterate though a large bu�er of memory to infer which website a victim visits. Successful

cache-occupancy attacks demonstrate that information must be leaked, but Shusterman

et al. (2019) and Cook et al. (2022) provide competing explanations for the mechanism

behind this leakage.

Shusterman et al. (2019) propose that browser memory activity causes evictions in

the adversary’s bu�er which, in turn, a�ects the adversary’s iteration frequency. Cook

et al. (2022) question this explanation and argue that operating system interrupts better

correlate with the adversary’s iteration frequency.

Several studies have begun to tackle this problem. Gülmezoglu (2021) proposed an

approach that uses explainable AI techniques to reveal which browser behaviours leak the

most information. Speci�cally, they annotate browser behaviour and record it alongside

HPCs. Then, they train a machine learning model to distinguish websites based on the

HPCs and use explainable AI to identify which measurements – and by extension, which

browser behaviours – provided the most information to the model. While this approach

e�ectively highlights which browser behaviours leak information to an adversary, it falls

short of explaining how the leaked information propagates through the microarchitecture

to the attacker, insight that is crucial for designing e�ective countermeasures.

Cook et al. (2022) themselves proposed an approach that reveals how information

leaks through the system by performing experiments while controlling microarchitectural

channels. Speci�cally, they isolate programs using operating system interfaces and inject

noise into speci�c microarchitectural components. Then, they conduct experiments across

multiple system con�gurations and measure the e�ect that these con�gurations have on

an attack. If the attack performs similarly well, then it is assumed that the controlled

channels must not leak any information. However, they do not fully control all channels,

leaving open the possibility that information leaks through uncontrolled channels.

This chapter addresses these gaps by presenting a method that comprehensively

controls information leakage through microarchitectural channels. Section 3.1 begins

with a description of the primitives underlying three recent website-�ngerprinting attacks:

the cache-occupancy attack in question, the loop-counting variant proposed by Cook et al.

(2022), and a third attack proposed by Zhang et al. (2023). Section 3.2 enumerates four

commonly discussed microarchitectural channels and describes methods to completely

control information �ow (for some attacks). Section 3.3 leverages this control to investigate

3.1. Analysis Overview 31

each channel and �nds that information �ows through all four channels. Finally, Section 3.4

examines the relative contribution of each channel to provide insight into the primary

causes of leakage for each primitive – resolving the con�icting explanations for the

cache-occupancy attack.

While the approach presented in this chapter is used in the context of website-

�ngerprinting attacks, I hope that it can serve as a basis for a more generic approach to

analysing coarse-grained leakage in the future.

3.1 Analysis Overview
This section provides an overview of the measurement primitives, explains how measure-

ments from these primitives are collected and reported, and describes the hardware and

software used in the experiments presented in this chapter.

3.1.1 Measurement Primitives
Listing 3.1 shows pseudocode for the measurement primitives used in the cache occupancy,

loop counting, and mwait attacks. Each primitive counts the number of operations it

can perform within a �xed period. The cache-occupancy primitive counts the number of

times it can advance a pointer through a linked list, the loop-counting primitive simply

counts the number of loop iterations, and the mwait primitive count the number of times

it can call the wait operation.

The cache-occupancy primitive employs a linked list that covers the size of the last-

level cache. Each element in the list occupies a full cache line and contains pointers

to the next and previous elements (Listing 3.2). The order of the elements in the list is

randomised to minimise the e�ects of prefetching. As an optimisation, the �rst and last

elements are linked together to enable the cache-occupancy primitive to iterate through

the list multiple times without needing special handling for the end of the list.

This work di�ers from previous approaches, which iterate through the entire list in

every loop iteration (Cook et al., 2022; Shusterman et al., 2019, 2021). Instead, we advance

the pointer one element in the list for every loop iteration, ensuring comparable levels of

precision across all primitives.

32 Chapter 3. Attributing Microarchitectural Leakage within Systems

1 T = 5 milliseconds
2 pointer = create_list()
3

4 for each sample {
5 count = 0
6

7 start = time()
8 while (time() - start < T) {
9 pointer = *pointer

10 count = count + 1
11 }
12

13 samples[sample] = count
14 }

(a) Cache Occupancy

T = 5 milliseconds

for each sample {
count = 0

start = time()
while (time() - start < T) {

count = count + 1
}

samples[sample] = count
}

(b) Loop Counting

T = 5 milliseconds

for each sample {
count = 0

start = time()
while (time() - start < T) {

wait()
count = count + 1

}

samples[sample] = count
}

(c) mwait

Listing 3.1: Psuedocode for Measurement Primitives
Psuedocode for the three measurement primitives studied in this chapter.

Each primitive shares a similar structure which measures the number of

times a speci�c action can be performed – a memory access (Cache Oc-
cupancy), no action (Loop Counting), and waiting using a specialised

instruction (MWAIT). Highlighted lines show the lines that di�er between

each primitive.

3.1. Analysis Overview 33

1 // Total size: 64 bytes -- 1 cache line
2 struct Element {
3 struct Element* next; // 8 bytes
4 struct Element* previous; // 8 bytes
5 uint8_t padding[42]; // 42 bytes
6 };

Listing 3.2: Linked-List Element

3.1.2 Measurement Collection
In the following section, we explain our approach for obtaining traces and presenting the

resulting data.

Recording a Trace. Before we record a trace, we visit example.com to ensure we have

a consistent starting point across all traces. Once the page has fully loaded, we start

executing the target primitive and record its measurements to a bu�er. We begin recording

measurements before navigating to the target website to guarantee that the trace captures

the beginning of each page load. After 50 milliseconds, we navigate to the target website.

We record 3,000 samples, capturing each sample 5 milliseconds apart, resulting in a

total collection time of 15 seconds. This duration was chosen to ensure the page was fully

loaded, even when we lower the speed of the processor (Section 3.2.3).

Collecting Traces. Before collecting any traces, we visit each target website, allowing it

to fully load and remain displayed for 30 seconds. This ensures that all traces are gathered

with a consistent browser cache state and better represent real-world scenarios, where a

user is likely revisiting a site.

We collect 100 traces for each of the Alexa Top 10 websites. To avoid bias from the

collection order, we randomise the sequence in which websites are visited. The trace

collection process is automated with Python, which controls the browser using Selenium

while running the measurement primitive in parallel.

Training a Classi�er. To identify a website from a recorded trace, we train a random

forest classi�er using 80% of the data for training and 20% for testing. For each reported

example.com

34 Chapter 3. Attributing Microarchitectural Leakage within Systems

value, we repeat the training process 20 times and report the mean and standard deviation

of the classi�er accuracy.

In this work, we use this classi�er as an indicator of system leakage and do not focus

on the precise accuracy value. If the classi�er can identify the correct website signi�cantly

better than random chance, we conclude that the system leaks information. Similarly, if

the classi�er cannot identify the correct website, we conclude that the system likely does

not leak information.

Measuring Time. We measure time using the rdtscp instruction, which counts reference
cycles. References cycles occur at a �xed rate regardless of the processor’s current fre-

quency (Intel, Vol. 3B §18.17). We convert 5 milliseconds into a �xed number of reference

cycles in advance and wait for that number of cycles to elapse.

175378

140214

105050

69886

34722

tmall.com

youtube.com

google.com

0 5 10 15
seconds

(a) Cache Occupancy

Machine: i7-7700

Accuracy: 96.3˘0.8%

420385

402725

385065

367405

349745

tmall.com

youtube.com

google.com

0 5 10 15
seconds

(b) Loop Counting

Machine: i7-7700

Accuracy: 93.4˘0.8%

161

160

160

160

159

tmall.com

youtube.com

google.com

0 5 10 15
seconds

(c) MWAIT

Machine: i9-12900K

Accuracy: 47.7˘2.2%

Figure 3.1: Baseline:
Measurements of the cache occupancy, loop counting, and mwait primitives

on a baseline system visualised as heatmaps.

Heatmaps. Throughout this work, we visualise the collected data using one-dimensional

heatmaps, following the style of Shusterman et al. (2019). We apply a linear colour map

with the minimum and maximum values set to the 2.5% and 97.5% percentiles of the data,

respectively. While this approach removes outliers and makes visual features in each

heatmap easier to identify, it also means that colour scales di�er between �gures.

Figure 3.1 illustrates baseline heatmaps for each primitive. The horizontal axis rep-

resents samples over time, and the colour at each position corresponds to the number of

3.2. Controlling Channel Contributions 35

iterations of the inner loop. Lighter colours indicate more iterations, while darker colours

indicate fewer iterations. The vertical axis has no meaning beyond making it easier to

view the �gure.

Hardware Performance Counters. Hardware performance counters (HPCs) track pro-

cessor performance metrics such as instruction cycles, cache hits, cache misses, branch

mispredictions, and more (Intel, Vol. 3B §20). These counters can be accessed directly

from user space using the rdpmc instruction. In experiments that use HPCs, we record

their values after each 5-millisecond measurement interval.

3.1.3 Experiment Setup
Table 3.1 summarises the hardware and software con�gurations of the two machines used

in the experiments.

Table 3.1: System Con�gurations.

CPU Intel i9-12900KF Intel i7-7700

Memory 4ˆ 16 GB DDR5 4800 MT/s 1ˆ 4 GB DDR3 1333 MT/s

Motherboard MSI Z690-A WIFI ASUS B150M-A D3

Storage 480 GB Western Digital SATA SSD 120 GB Patriot Burst SATA SSD

OS Ubuntu 22.04.1 LTS Ubuntu 22.04.1 LTS

Kernel Linux 6.2.0 Linux 6.1.38

Browser Chrome 113.0.5672.63 Chromium 109.0.5414.74

Python Python 3.10.12 Python 3.10.12

Selenium Selenium 3.141.0 Selenium 3.141.0

C Compiler GCC 11.4.0 GCC 11.5.0

3.2 Controlling Channel Contributions
Before analysing how information �ows through microarchitectural channels, we �rst ask:

Which microarchitectural channels exist, and how can we control them? We focus on four

36 Chapter 3. Attributing Microarchitectural Leakage within Systems

well-known channels: competition with co-resident threads for execution time (Lampson,

1973), interrupt handling (Cook et al., 2022), frequency scaling (Wang et al., 2022, 2023;

Taneja et al., 2023), and eviction from the cache hierarchy (Liu et al., 2015).

In the rest of the section, we describe how we con�gure the system to control inform-

ation �ow through each channel and examine the e�ects of this con�guration on the

cache-occupancy, loop-counting, and mwait primitives. Afterwards, we conclude that we

can completely control leakage measured both the loop-counting and mwait primitives

but can only partially control leakage measured by the cache-occupancy primitive.

3.2.1 Intracore Contention
To control intracore contention, we isolate the primitive from all other programs running

on the machine. Speci�cally, we designate one core as the ‘measurement’ core and

restrict the primitive execution to this core while forcing all other processes to run

on the remaining cores. We achieve this isolation using the Linux kernel parameter

isolcpus, which prevents the kernel from automatically scheduling any threads on the

speci�ed core. We then use the taskset utility to explicitly bind the primitive to that core

during execution. Although disabling hyperthreading is not strictly necessary, owing to

isolcpus, we disable it to simplify con�guration and veri�cation by ensuring that each

core runs only a single thread.

3.2.2 Interrupt Handling
Isolating cores with isolcpus also shifts most interrupt handling to non-isolated cores.

Throughout this work, we may need to manually reassign which cores handle interrupts.

We accomplish this reassignment using the irqbalance utility and by con�guring the /
proc/irq/[id]/smp_affinity interface.

This approach controls the e�ects of movable interrupts; however, some interrupts

remain immovable. To control the e�ects of immovable interrupts, we prevent them from

occurring altogether.

Tickless. To remove timer interrupts, we enable tickless mode for the kernel. In this

mode, timer interrupts are disabled on cores that have only a single thread scheduled for

execution. To activate tickless mode, we compiled the kernel with the CONFIG_NO_HZ_

3.2. Controlling Channel Contributions 37

FULL compile-time option and add the measurement core to the list of cores allowed to

enter tickless mode using the nohz_full kernel parameter.

Tickless Constraints. To prevent timer interrupts from being scheduled, we impose

the following three constraints on each measurement primitive. First, the primitives

must never execute a system call that triggers a timer interrupt; speci�cally, they must

avoid any system calls that cause the thread to sleep. Second, the primitives must be

single-threaded. Finally, no other processes should be scheduled on the same core as the

primitive. Violating any of these constraints may cause the system to schedule timer

interrupts.

Tickless Veri�cation. We verify the �rst constraint through manual code inspection,

ensuring that the main loop of each primitive never executes any operation that could

cause control to return to the kernel. In cases where sleep is required for a speci�c

duration, we replace the sleep call with a busy loop that uses the rdtscp instruction

to track elapsed time. The second and third constraints are veri�ed using the /sys/
kernel/debug/sched/debug interface, to ensure that only a single thread is running on

the measurement core.

RCU Callback O�loading. Read-Copy-Update (RCU) is a synchronisation mechanism

that allows multiple kernel threads to concurrently read from a shared data structure.

Callbacks can be registered to execute when a thread releases its reference to that structure.

To minimise the latency of the operation releasing the last reference, another core will be

interrupted to handle the callback. To remove these interrupts, we add the measurement

core to the list of cores that are excluded from RCU callback o�oading with the rcu_
nocbs kernel parameter.

Verifying Absence of Interrupts. We verify the removal of interrupts by monitoring

the /proc/interrupts and /proc/softirqs interfaces. These interfaces report the

total number of interrupts handled by the kernel since power-on, categorised by interrupt

type and the core that processed them. In addition, we use the CPU_CLK_UNHALTED.
RING0_TRANS performance counter to track the number of transitions from user to kernel

mode. Together, these tools allow us to determine whether any interrupts occurred during

trace recording.

We �nd that in the vast majority of experiments (99.52%), no interrupts occur. In

the rare instances where interrupts do occur, they are few and appear uncorrelated with

38 Chapter 3. Attributing Microarchitectural Leakage within Systems

victim activity. Whenever we report results from experiments without interrupts, we

exclude any traces where interrupts were detected.

3.2.3 Frequency Scaling
Modern processors strive to balance frequency, heat dissipation, and power consumption.

A key mechanism for maintaining this balance is dynamic voltage and frequency scaling

(DVFS), which adjusts the operating frequency and voltage. Recent studies have shown

that frequency scaling can be exploited to leak information (Wang et al., 2022, 2023; Taneja

et al., 2023).

To control leakage through DVFS, we perform the following procedure. First, we

disable two BIOS features that allow the processor to change its frequency: TurboBoost and

SpeedStep. Afterwards, we con�gure the operating system to �x the processor frequency

at a level low enough for sustained operation. This is done using the cpufreq-set utility

to set both the minimum and maximum allowed frequencies to the same value – half of the

processor base frequency (1.8 GHz). Finally, we set the power governor to ‘performance’

and write a value of 0 to the /dev/cpu_dma_latency interface to prevent the processor

from entering any low-power states.

Although many of these interfaces are provided on a per-core basis, consumer pro-

cessors typically support only a single frequency domain, meaning the operating system

must select one frequency for all cores. Since the processor frequency is set below its

maximum, overall system performance is reduced. We account for this by ensuring that

the time allotted to record each trace is su�cient for the browser to fully load the webpage

despite the reduced performance.

3.2.4 Cache
To control leakage through the cache, we employ Intel Cache Allocation Technology

(CAT) to partition the last-level cache. Speci�cally, we assign half of the cache ways

to the measurement core and the other half to the remaining cores. This partitioning

prevents other programs on the machine from evicting memory used by the measurement

core, e�ectively severing cache eviction as a channel. However, as discussed below, this

approach does not fully close all memory-based channels, and some leakage persists.

3.2. Controlling Channel Contributions 39

71545

68316

65087

61858

58629

google.com

tmall.com

youtube.com

0 5 10 15
seconds

(a) Cache Occupancy

Machine: i7-7700

Accuracy: 91.9˘2.0%

236256

236256

236256

236255

236255

google.com

tmall.com

youtube.com

0 5 10 15
seconds

(b) Loop Counting

Machine: i7-7700

Accuracy: 11.3˘2.6%

157

157

157

157

157

google.com

tmall.com

youtube.com

0 5 10 15
seconds

(c) MWAIT

Machine: i9-12900K

Accuracy: 10.0˘0.0%

Figure 3.2: Reduced Leakage:
Measurements of the cache occupancy, loop counting, and mwait primitives

after removing leakage.

3.2.5 Validating Control
Having implemented techniques to control each channel, we measure the e�ect of this

control on each primitive. We apply all previous control measures and perform website

�ngerprinting as described in Section 3.1.1. Figure 3.2 illustrates the results.

Loop counting and mwait. We successfully eliminate all leakage measured by the

loop-counting and mwait primitives. For the loop-counting primitive, the measurements

change only minimally, and the variations do not appear correlated with browser activity.

For the mwait primitive, all recorded samples are identical. This contrasts sharply with

Figure 3.1, where leakage is so great that websites are distinguishable through visual

inspection.

This elimination of leakage indicates that we have complete control over microarchi-

tectural channels leaking information to the loop-counting and mwait primitives.

Cache Occupancy. Unfortunately, we do not have complete control over microarchi-

tectural channels leaking information to the cache-occupancy primitive. Websites still

remain distinguishable through visual inspection, as shown in Figure 3.2a. Moreover,

training a classi�er on these traces yields an accuracy of 91.9%.

This result already demonstrates a signi�cant di�erence between the primitives. Spe-

ci�cally, that the primitives do not measure the same channels.

40 Chapter 3. Attributing Microarchitectural Leakage within Systems

3.2.6 Remaining Leakage
We suspect that the uncontrolled channel is due to contention in o�-core resources

involved in servicing memory accesses. Several studies have shown leakage through

inter-core interconnects (Dai et al., 2022; Paccagnella et al., 2021; Wan et al., 2022), last-

level cache slices (Dai et al., 2022; Paccagnella et al., 2021; Wan et al., 2022), memory

controllers (Wang et al., 2014), and DRAM (Pessl et al., 2016).

Experimental Description While fully controlling all these resources is beyond the

scope of this thesis, we conduct the following experiment to reveal whether the leakage

arises from these resources or not. We modify the cache-occupancy primitive so that its

memory �ts entirely within the private cache of the measurement core. Speci�cally, we

reduce the size of the linked list to 28 KB, which is slightly smaller than the size of the L1

data cache.

Results. When training a classi�er on recorded traces under this con�guration, we

achieve an accuracy of 11.8˘2.6%. This is in stark contrast to the 91.9% accuracy when

using a larger linked list, indicating that we have completely controlled the residual leakage.

Since memory accesses under this con�guration can be completely served without using

o�-core resources, we conclude that the leakage is due to contention in o�-core resources.

We leave the task of identifying and controlling these speci�c resources to future work.

3.3 Verifying Channel Contributions
Having established control over all channels, we now turn to the question: Which channels
leak information?

To address this question, we begin with a system con�guration from the previous

section that completely controls leakage. For simplicity of analysis, we use the loop-

counting primitive in this section.

For each channel, we create a system con�guration that allows leakage exclusively

through that channel. We create this con�guration by applying all control measures from

the previous section, except we omit those corresponding to the chosen channel. We then

perform website �ngerprinting on this new system con�guration. If the classi�er can

successfully distinguish websites, we conclude that the channel leaks information.

3.3. Verifying Channel Contributions 41

Throughout this section, we �nd that all identi�ed channels exhibit enough leakage to

mount reliable website-�ngerprinting attacks with the loop-counting primitive. Surpris-

ingly, this includes the cache channel, despite the fact that the loop-counting primitive

never performs any memory accesses.

3.3.1 Intracore Contention
First, we test whether intracore contention serves as a channel for information leakage.

For this con�guration, we omit the control steps described in Section 3.2.1 and manually

relocate all interrupts away from the measurement core.

236256

232242

228228

224214

220200

google.com

tmall.com

youtube.com

0 5 10 15
seconds

Figure 3.3: Intracore Leakage:
Traces recorded on i7-7700 with a con�guration that allows leakage from

intracore contention. Accuracy: 47.6˘2.9%

Figure 3.3 illustrates the results of website �ngerprinting under this con�guration.

The classi�er achieves an accuracy of 47.6˘2.9%. While this is notably lower than the

accuracy obtained with the baseline con�guration, it remains signi�cantly higher than

random guessing. We use this result, along with visual inspection of the heatmaps, to

conclude that intracore contention leaks information.

42 Chapter 3. Attributing Microarchitectural Leakage within Systems

3.3.2 Interrupt Handling
Next, we examine whether interrupt handling serves as a channel that leaks information.

For this con�guration, we omit the control steps described in Section 3.2.2.

In order to control intracore leakage, we use the isolcpus kernel parameter. However,

this will cause the kernel to move interrupts away from the measurement core. To avoid

falsely concluding that interrupts do not leak information, we manually relocate all

interrupts back to the measurement core.

236084

235700

235316

234932

234548

google.com

tmall.com

youtube.com

0 5 10 15
seconds

Figure 3.4: Interrupt Leakage:
Traces recorded on i7-7700 with a con�guration that allows leakage from

interrupts. Accuracy: 78.6˘1.7%

When we perform the experiment with this con�guration, the classi�er achieves an

accuracy of 78.6˘1.7%. Figure 3.4 illustrates a heatmap of the resulting traces. Similar to

the previous section, we use the classi�er accuracy in combination with visual inspection

to conclude that interrupt handling leaks information.

Per-device Interrupt Handling. The default con�guration on our system distributes

interrupt handling across all of the cores. For example, the operating system may assign

one core to handle all interrupt requests from the network interface, while another core

handles all interrupts from the sound interface. This raises a natural question: Do di�erent
interrupts leak di�erent information?

3.3. Verifying Channel Contributions 43

Experiment design. We begin with a system con�guration that completely removes

leakage using the steps described in the previous section. Afterwards, we move all

interrupts from a speci�c device to the measurement core while relocating all other

interrupts to a di�erent arbitrarily chosen core. We then perform website �ngerprinting

as outlined in Section 3.1.1. This experiment is repeated for each device in the system:

the USB controller (USB), NVMe storage (Storage), networking, graphics, sound, and the

system management engine (Management).

Table 3.2: Interrupt Leakage (By device):
Accuracy of the loop counting primitive on our i7-7700 machine when we

deliver interrupts from a speci�c device to the measurement core.

Interrupt Accuracy

Graphics 61.56 ˘ 3.01%
Management 11.24 ˘ 1.70%
Networking 56.20 ˘ 2.25%
Sound 22.36 ˘ 2.34%
Storage 54.92 ˘ 2.09%
USB 10.60 ˘ 2.08%

Results. Table 3.2 shows the results of this experiment. The classi�er accuracy varies

signi�cantly depending on which device interrupts are delivered to the measurement

core. For example, interrupts from the internal graphics card yield the highest accuracy at

61.6%, while interrupts from the management engine produce the second-lowest accuracy

at 11.2%. The lowest accuracy is seen with USB interrupts; however, this outcome is

likely an artefact of our experimental setup since the device under test is exclusively used

remotely and has no USB peripherals attached. Using the results of this experiment, we

conclude that di�erent interrupts do leak di�erent information.

3.3.3 Frequency Scaling
Next, we examine whether frequency changes serve as a channel to leak information. For

this con�guration, we omit the control steps described in Section 3.2.3.

44 Chapter 3. Attributing Microarchitectural Leakage within Systems

548349

539137

529924

520712

511499

google.com

tmall.com

youtube.com

0 5 10 15
seconds

Figure 3.5: Frequency Scaling Leakage:
Traces recorded on i7-7700 with a con�guration that allows leakage from

frequency changes. Accuracy: 90.8˘1.5%

Results. Figure 3.5 illustrates heatmaps from this experiment. When we train a classi�er

on traces recorded under this con�guration, it achieves an accuracy of 90.8˘1.5%. Again,

we use these results to conclude that frequency scaling due to DVFS leaks information.

3.3.4 Cache
Finally, we investigate the cache as a channel for leaking information. For this �nal

con�guration, we omit the steps from Section 3.2.4.

Results. As with all other con�gurations, the traces illustrated in Figure 3.6 can be

distinguished by eye. Furthermore, the classi�er achieves an accuracy of 94.3˘1.2%. At

�rst glance, this result is not too surprising due to existence of many works that explicitly

use the cache to leak information; however, the loop-counting primitive that we use to

collect the measurements does not perform any memory accesses.

This raises a natural question: How does loop counting measure cache leakage? The

remainder of this section addresses this question.

Measuring Cache Misses. We begin by instrumenting the loop-counting primitive to

record the number of cache misses in the L1I (instruction) and L1D (data) caches. We

3.3. Verifying Channel Contributions 45

236256

236236

236216

236196

236176

google.com

tmall.com

youtube.com

0 5 10 15
seconds

Figure 3.6: Cache Leakage:
Traces recorded on i7-7700 with a con�guration that allows leakage from

cache evictions. Accuracy: 94.3˘1.2%

achieve this by programming the hardware performance counters to track the number of

FRONTEND_RETIRED.L1I_MISS_PS and MEM_LOAD_RETIRED.L1_MISS_PS events during

each measurement. When we perform the experiment again, we observe no data cache

misses, but we do observe instruction cache misses.

Root Cause Analysis. We hypothesise that the cause of these instruction cache misses

lies in the architecture of the inclusive last-level cache (LLC) of the i7-7700 processor.

In an inclusive cache hierarchy, when a cache line is evicted from the LLC, it is also

invalidated from the private caches (L1I, L1D, and L2) of each core. Since the LLC does

not di�erentiate between data and instructions, extensive data accesses by the victim

may inadvertently evict the loop-counting primitive’s code from the cache. When such

eviction occurs, the processor loses immediate access to those instructions and stalls while

it fetches them from system memory. This stall reduces the number of loop iterations

completed during the measurement interval, creating a signal that is correlated with the

victim’s memory activity.

Non-Inclusive Caches. To test this hypothesis, we repeat the experiment with a i9-

12900KF processor, which features a non-inclusive LLC. In such architectures, evicting a

cache line from the LLC does not cause it to be evicted from the private caches of each

46 Chapter 3. Attributing Microarchitectural Leakage within Systems

core.

When we conduct the experiment, we observe no L1I cache misses, and the loop-

counting primitive loses all sensitivity to cache leakage. These results support our hy-

pothesis: the loop-counting primitive is sensitive to cache leakage on inclusive-cache

systems because its instructions are being evicted from the instruction cache as a result

of victim memory activity.

3.4 Measuring Channel Contributions
In the previous sections, we demonstrate our ability to control leakage (Section 3.2) and

show that all channels leak information (Section 3.3). This section measures the relative

contribution of each channel to the total leakage measured by each primitive.

3.4.1 Methodology
We perform website �ngerprinting while simultaneously recording various system and

processor performance events related to each channel. We then compute the Pearson

correlation coe�cient between the number of iterations and the collected performance

events, using this coe�cient as an indicator of each channel’s contribution to the total

leakage measured by each primitive. We report the average and standard deviation of the

coe�cient across all 1,000 traces.

We modify the inner loop of each primitive to track various processor events. For each

5-millisecond sample, we record the number of loop iterations, the number of interrupts

delivered to the measurement core, the total time spent handling interrupts, the processor

frequency, and the number of L1I and L3 cache misses attributed to the primitive. All

these measurements are performed on a baseline system, meaning we do not apply any of

the controls described in Section 3.2.

Measuring Interrupts. As in previous sections, we measure the number of interrupts

using the /proc/interrupts and /proc/softirqs interface. Sampling occurs every 5

milliseconds, and we compute the di�erence between successive samples.

Measuring Interrupt Time. While the total number of interrupts can be measured

easily, there are no readily available interfaces to capture the total interrupt handling

3.4. Measuring Channel Contributions 47

time with �ne granularity. To address this, we adopt the same technique used by Cook

et al. (2022), which detects gaps in execution and attributes them to interrupt handling.

Speci�cally, we modify the inner loop to repeatedly access the RDTSCP instruction. If the

di�erence between successive measurements exceeds 500 nanoseconds, the interval is

recorded as an execution gap, and its duration is added to the total interrupt handling

time.

Although this thesis attributes all execution gaps to interrupt handling time, our

currently unpublished follow-up work reveals that many of these gaps are caused by other

factors, such as the processor pausing execution to adjust its frequency.

Measuring Frequency. We measure the CPU_CLK_UNHALTED.THREAD_ANY and CPU_
CLK_UNHALTED.REF_TSC performance events. These events serve functions similar to the

APERF and MPERF model-speci�c registers but can be accessed directly from user space.

The ratio between these two events provides the average processor frequency over a given

period (Intel, Vol. 3B §14.2).

Measuring Cache Activity. We measure data and instruction cache activity separately

by monitoring the CYCLE_ACTIVITY_CYCLES_L3_MISS and FRONTEND_RETIRED.L1I_
MISS performance events. The former counts the number of cycles during which load

instructions are stalled due to L3 cache misses, while the latter counts the number of

instructions that miss in the L1I cache.

3.4.2 Contributions of Channels
Here, we report the correlation between each channel and the iteration count for each

primitive. Since the operating system assigns speci�c cores to handle interrupts from

speci�c devices, the results may vary depending on the devices connected to the system

and the core used for measurements. To account for this, we perform the experiments

under two system con�gurations: a baseline con�guration where we arbitrary selected

the �nal core on the system as the measurement core and a modi�ed con�guration where

all interrupts are redirected to the measurement core.

Table 3.3 presents the results for all three primitives under these two con�gurations.

We restrict our reporting to one column of the table at a time – the column corresponding

to the primitive of interest in each of the following paragraphs.

48 Chapter 3. Attributing Microarchitectural Leakage within Systems

Table 3.3: Correlating Channels and Measurement Primitives:
Correlation between iterations and number of events on both machines.

Baseline refers to the default interrupt con�guration. Interrupts refers to

the con�guration where all interrupts are delivered to the measurement

core.

Cache occupancy Loop counting mwait

Machine i9-12900KF i7-7700 i9-12900KF i7-7700 i9-12900KF

B
a
s
e
l
i
n

e

Interrupt Count 0.04˘0.01 ´0.03˘0.02 ´0.05˘0.03 0.03˘0.05 0.11˘0.04
Interrupt Time ´0.20˘0.07 ´0.76˘0.03 ´0.27˘0.07 ´0.40˘0.05 0.79˘0.08
Frequency 0.70˘0.04 0.50˘0.11 0.77˘0.09 0.82˘0.04 0.48˘0.19
L1I Cache ´0.15˘0.03 0.08˘0.05 0.04˘0.02 0.06˘0.04 ´0.06˘0.17
L3 Cache ´-0.99˘0.00 ´0.93˘0.04 ´0.10˘0.04 ´0.44˘0.06 ´0.09˘0.04

I
n

t
e
r
r
u

p
t
s Interrupt Count ´0.25˘0.05 ´0.17˘0.05 ´0.23˘0.05 ´0.19˘0.04 0.55˘0.15

Interrupt Time ´0.36˘0.06 ´0.76˘0.02 ´0.35˘0.07 ´0.44˘0.06 0.44˘0.13
Frequency 0.70˘0.03 0.49˘0.08 0.78˘0.08 0.81˘0.04 0.22˘0.18
L1I Cache ´0.22˘0.05 ´0.28˘0.04 ´0.20˘0.05 ´0.22˘0.05 0.40˘0.12
L3 Cache ´0.98˘0.00 ´0.93˘0.03 ´0.22˘0.06 ´0.45˘0.05 0.15˘0.08

Cache occupancy. For the cache-occupancy primitive, L3 cache misses shows the highest

correlation with the number of iterations. This is irrespective of whether the processor

features an inclusive (i7-7700) or non-inclusive (i9-12900KF) cache or whether interrupts

are moved to the measurement core or not.

Loop counting. For the loop-counting primitive, frequency shows the highest correlation

with the number of iterations. Interestingly, interrupt count and interrupt time exhibit

signi�cantly di�erent correlations to the number of iterations. Our unpublished follow-up

work investigates this result further.

mwait. Finally, we report the results for the mwait primitive. As this primitive relies

on instructions supported only by newer architectures, we limit our analysis to the i9-

12900KF processor. Under the baseline con�guration, interrupt time shows the highest

correlation. When interrupts are redirected to the measurement core, interrupt count

shows the highest correlation.

Comparing to Cook et al (2022). Cook et al. (2022) suggest that the primary source of

leakage for the cache-occupancy and loop-counting primitives is interrupt-related activity.

In contrast, our �ndings indicate that the main contributors are cache behaviour and

3.5. Conclusion 49

frequency scaling, respectively. This discrepancy likely arises from di�erences in how

channel contribution is measured.

Using machine learning accuracy as a metric can be misleading, as accuracy may

improve even when information is removed from the signal. Consider loop-counting

measurements on a system with a baseline con�guration (Figure 3.1b) and a modi�ed

con�guration that only allows leakage through the cache channel (Figure 3.6). Under the

�rst con�guration, we trained a classi�er with an accuracy of 93.4 ˘ 0.8%. Under the

second con�guration, we trained a classi�er with a higher accuracy (94.3˘ 1.2%) despite

the removal of channels that contain information.

We hypothesise that this increase in accuracy occurs because leakage from di�erent

channels may destructively interfere with each other, thereby reducing overall signal

quality. In contrast, using Pearson correlation as a measure of channel contribution

accounts for such interference, leading to di�erent insights than those obtained from

classi�er-based analysis alone.

3.5 Conclusion
Throughout this chapter, we describe how to control leakage through microarchitectural

channels and how to use this control to uncover insights into how leakage propag-

ates throughout a system. We use this approach to analyse recent microarchitectural

website-�ngerprinting attacks and address con�icting explanations surrounding the cache-

occupancy attack.

Our �ndings show that while the cache emerges as the dominant channel for the

cache-occupancy attack, other channels also contribute signi�cantly. We observe similar

patterns in our analysis of the loop-counting and mwait primitives too.

Our �ndings highlight the importance of considering multiple channels when attempt-

ing to mitigate the risk of microarchitectural attacks. Countermeasures that only address

the most prominent channel may not be su�cient to eliminate the threat of attack. More

concerning is the impracticality of isolating all potential channels, particularly those

involving the memory hierarchy, suggesting that fully mitigating cache-occupancy or

loop-counting attacks may not be feasible.

Fortunately, sensitivity to multiple channels seems limited to coarse-grained attacks

such as the website �nger-printing attacks analysed in this chapter. These attacks seem to

50 Chapter 3. Attributing Microarchitectural Leakage within Systems

have limited ability to extract sensitive information, reducing the urgency for immediate

and e�ective countermeasures.

The following chapters explore signi�cantly more powerful adversaries capable of

conducting higher-bandwidth measurements and examine the implications of these cap-

abilities on the security of modern web browsers.

51

Chapter 4

Mounting a High-Capacity
Pixel-Stealing Attack

When web resources interact, the browser enforces a security policy to determine whether

the interaction should be allowed. The most common policy is the same-origin policy,

which restricts interactions between resources served from di�erent origins.

However, web browsers do permit certain forms of cross-origin interaction. One such

example is the cross-origin application of SVG �lters – small functions that alter the visual

appearance of web content and enable e�ects, such as blurring, that are otherwise di�cult

to achieve using standard HTML and CSS alone. Web browsers allow �lters to be applied

to cross-origin resources to create cohesive visual e�ects on webpages. This is assumed

to be safe because the browser restricts access to the output of the �lter.

Unfortunately, unintended side e�ects from �lter application may be observable to

malicious websites. For example, previous studies have shown that �lter execution time

is data dependent, enabling attackers to exploit these timing variations to launch pixel-

stealing attacks (Stone, 2013; Andrysco et al., 2015; Kotcher et al., 2013).

Figure 4.1 illustrates the general structure of such �lter-based pixel-stealing attacks.

In these attacks, the attacker lures a user to a malicious website that embeds sensitive

content, such as a third-party site within an iframe, and then applies a �lter to the

displayed content. The content in�uences the execution time of the �lter which, in turn,

in�uences the page rendering time. While the attacker cannot directly measure the page

rendering time, they can induce a large delay to cause the browser to miss the deadline to

render the next frame – an event the attacker can detect.

52 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

Figure 4.1: Overview of a Pixel-Stealing Attack:
An adversary tricks a user into visiting their malicious website (Attacker
Website). The Attacker Website embeds a website that displays sensitive

user information (Victim Content) then applies a vulnerable SVG �lter to

the content (Attacker Filter). The adversary observes how the �lter impacts

the rendering of the browser to extract information and repositions the

victim content to extract the desired subset of the victim content.

A fundamental limitation of these pixel-stealing attacks is that they extract informa-

tion by causing the browser to miss the deadline for rendering a frame. Considering that

browsers render frames at a �xed rate, typically matching the refresh rate of the display,

the data rate of such attacks is inherently limited. This limitation is further compounded

by the fact that attacks usually extract only a single binary value per frame, which typic-

ally restricts the maximum data rate to no more than 60 bits per second. Furthermore,

browser vendors have acknowledged the risk of pixel-stealing attacks and implemented

countermeasures to eliminate observable data-dependent timing di�erences in �lter exe-

cution (Mozilla Bug Tracker, 2013; Chromium Project, 2013, 2016a, 2017). Recent studies

have shown that frequency scaling can be exploited to mount pixel-stealing attacks despite

these mitigations (Taneja et al., 2023; Wang et al., 2023), but these attacks su�er from even

lower leakage rates. This raises the question: Are high-capacity pixel-stealing attacks on
modern browsers feasible?

4.1. Overcoming Cross-Origin Isolation 53

This chapter answers the question in the a�rmative by presenting a high-capacity

pixel-stealing attack capable of leaking several hundred bits per second. The attack

achieves this by employing a di�erent mechanism to extract information from the browser:

it uses the Prime+Probe technique to monitor content-dependent memory accesses per-

formed by the feComponentTransfer SVG �lter. Since the �lter performs memory access

for each pixel, the increased number of measurable events raises the data rate well beyond

the 60-bit-per-second limit.

Section 4.1 describes a generic technique to bypass cross-origin isolation, a counter-

measure designed to prevent malicious websites from exploiting microarchitectural event

measurements. Sections 4.2 and 4.3 introduce Pixel Thief, a cache-based pixel-stealing

attack that exploits data-dependent memory accesses in the feComponentTransfer �lter.

Finally, Sections 4.4 and 4.5 demonstrate how Pixel Thief can be used as a primitive for

e�cient text-stealing and history-sni�ng attacks, respectively.

4.1 Overcoming Cross-Origin Isolation
The �rst major challenge for pixel-stealing attacks on modern browsers is cross-

origin isolation. To access high-resolution timers directly or to create them using

SharedArrayBuffer, a website must control cross-origin isolation with the COEP/COOP
headers. If the website embeds or is embedded within a cross-origin site, both sites must

use these headers and must include each other on their embedding allow-list.

While it may be possible to exploit incorrectly con�gured websites, the attacker is

limited to targetting only these miscon�gured websites. To allow the attack to target the

vast majority of sites, we focus on scenarios where these headers are not used.

In such scenarios, the browser prevents access to high-resolution timers, which limits

the attacker’s ability to mount high-capacity attacks. One potential solution is to build

on prior work by employing advanced techniques that leverage transient execution to

enable side-channel attacks with high-temporal accuracy even without a source of high-

resolution timing (Katzman et al., 2023; Kaplan, 2023). However, before adopting these

complex methods, we ask the question: Does the mutual exclusion between embedding
websites and accessing high-resolution timers actually exist?

The rest of this section demonstrates that the answer is no, provided the attacker

is willing to accept stricter constraints on their attack. Speci�cally, the adversary must

54 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

coerce the victim into interacting with the malicious website at least once. This shifts the

adversarial model from those used in previous pixel-stealing works to the slightly stricter

models used in clickjacking attacks (Huang et al., 2012).

Bypassing cross-origin isolation. We use this interaction to open a second page. The

�rst page sends COEP/COOP headers to access high-resolution timers, but cannot embed

cross-origin content. The second page is reversed, it cannot access high-resolution timers

because it does send COEP/COOP headers, but it can embed cross-origin content.

The attack is split between these two pages: any component requiring high-resolution

timers runs on the �rst page, while any part interacting with cross-origin content runs

on the second page. The two pages cannot communicate directly owing to cross-origin

isolation. However, both can send messages to a server via WebSockets, which can relay

messages between the two pages.

Figure 4.2 illustrates an overview of this approach. The server serves two pages to the

victim: the �rst page disables COEP/COOP and embeds the victim page (blue webpage on

the left), while the second page enables COEP/COOP and performs the cache attack with

high-resolution timers (orange webpage on the right). (#1) The server instructs the �rst

page to manipulate the victim page to leak data. (#2) The data leaks through the cache

from the victim to the second page. (#3) The second page recovers the leaked data using

the high resolution timers and sends it back to the server.

Same-Origin Content. When the targetting same-origin content, such as the history-

sni�ng attack described in Section 4.5, the two-page architecture is unnecessary because

there is no cross-origin content that the browser restrict access to. We use the single-page

architecture for attacks that leak same-origin content and the two-page architecture for

those that leak cross-origin content.

4.2 Leaking Pixels
This section describes the pixel-stealing attack that serves as the foundation for the

other attacks presented in this chapter. The pixel-stealing attack reveals sensitive data

displayed in rendered webpages by exploiting data-dependent memory accesses in �lters.

Subsequent attacks in this chapter encode secret information into parts of the rendered

webpage and then use this attack to recover it.

4.2. Leaking Pixels 55

Figure 4.2: Bypassing Cross-Origin Isolation:
The server split the attack into two pages that can be delivered to the user

under di�erent security models. The �rst page embeds sensitive content

(blue/left) while the second mounts the cache attack (orange/right). (#1) The

server instructs the �rst page to leak information (#2) which is recovered

via a cache attack and then (#3) transmitted back to the server.

Figure 4.3 illustrates an overview of the attack. The attacker embeds the victim image

into their page (#1) and uses CSS to isolate and scale speci�c pixels (#2). Then, the attacker

prepends their own image above these pixels (#3), so that when the �lter is applied, it

generates a predetermined sequence of memory accesses. When the browser renders the

page, the �lter processes both images using each pixel value as an o�set into a lookup

table (#4). In parallel, the attacker performs a cache attack to monitor memory accesses

to this table over time (#5). Finally, the attacker analyses the recorded memory accesses

to identify the predetermined sequence corresponding to their own image. Subsequent

memory accesses are attributed to the victim’s image and can be recovered then combined

with previously obtained pixels to reconstruct the entire victim image (#6).

56 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

Filter Table

...

Pream
ble 1

0
1
0
1
1
0
1

Victim
 C

ontent

Preamble Victim Content

Threshold

0101011010011000000

Scale Image
#2

Victim Content
#1 Attach Preamble

#3

Filter Combined Image
#4

Monitor Cache Activity
#5

Reassemble Image
#6

Figure 4.3: Recovering Pixel Data:
(#1) Embed victim content. (#2) Isolate pixels in victim content. (#3) Embed

attacker content. (#4) Apply �lter to both images. (#5) Record memory

accesses. (#6) Find memory accesses correlating to attacker content then

recover victim content.

While the attack works in both Chrome and Firefox, Firefox’s implementation of the

relevant �lter is signi�cantly easier to explain; therefore, the remainder of this section

focuses on Firefox. It begins with a description of the vulnerable SVG �lter and then

discusses GPU implementations of SVG �lters, the challenges these pose for the attacker,

and how the attacker can force Firefox to use the vulnerable CPU implementations instead.

Finally, the section concludes with a discussion on measurement frequency.

4.2.1 The feComponentTransfer Filter
The feComponentTransfer SVG �lter element enables designers to remap the colours

of their webpages. It can be used to create various recolouring e�ects, such as sepia

4.2. Leaking Pixels 57

or grayscale. The �lter processes each pixel of the input image individually: �rst, it

separates the pixel into its red, green, and blue components; then, it applies designer-

de�ned functions to each component’s value independently; �nally, it recombines the

components to produce the pixel colour in the output image. Listing 4.1 (Lines 2–6)

provides an example of how such a �lter is de�ned.

1 <filter id="filter_id">
2 <feComponentTransfer>
3 <feFuncR type="discrete" tableValues="0 1"></feFuncR>
4 <feFuncG type="discrete" tableValues="1 0"></feFuncG>
5 <feFuncB type="discrete" tableValues="0.3 0.6 0.9"></feFuncB>
6 </feComponentTransfer>
7 <feGaussianBlur stdDeviation="0" />
8 </filter>

Listing 4.1: Malicious �lter de�nition:
A �lter that executes the vulenrable feComponentTransfer �lter followed

by feGaussianBlur to force execution of the �lter onto the CPU.

Implementation. The feComponentTransfer speci�cation allows several ways to

de�ne the colour mapping functions, including identity maps, linear maps, gamma maps,

interpolated tables, and discrete tables (MDN Contributors, a). Regardless of the chosen

method to de�ne the colour mapping functions, Firefox implements the function using a

256-entry lookup table that is populated during a precomputation phase.

Listing 4.2 shows a simpli�ed version of Firefox’s feComponentTransfer implementa-

tion in c-like pseudocode. Lines 1–4 de�ne the implementation function and its parameters.

The input and output parameters represent the �lter’s input and output images, each

composed of interleaved 8-bit red, green, and blue values. The �nal parameter, tables,

contains the precomputed lookup tables generated from the colour mapping functions

de�ned for the �lter. Line 6 iterates over every pixel in both the input and output images,

while Line 7 iterates over each colour component of the current pixel. Finally, Line 8

applies the �lter by performing a lookup in the corresponding table.

58 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

1 void TransferComponents(
2 uint8_t input[N],
3 uint8_t output[N],
4 uint8_t tables[3][256]
5) {
6 for (uint32_t i = 0; i < N; i += 3) {
7 for (uint32_t c = 0; c < 3; c++) {
8 output[i + c] = tables[c][input[i + c]];
9 }

10 }
11 }

Listing 4.2: Firefox’s feComponentTransfer implementation.

Memory access patterns. Here, we analyse the cache access patterns of the

feComponentTransfer implementation. Consider an image with two pixels: the �rst is

black p0, 0, 0q, and the second is white p255, 255, 255q. As before, Lines 6 and 7 of List-

ing 4.2 iterate over each component of each pixel, with Line 8 performing table lookups.

A side e�ect of these lookups is that the accessed table entries are loaded into the CPU

cache hierarchy. Speci�cally, applying the �lter to the black pixel loads the �rst entries of

each table into the cache, while processing the white pixel loads the last entries of each

table. Consequently, an attacker who can distinguish between memory accesses to the

�rst entries versus the last can determine whether the pixel is black or white.

4.2.2 Executing feComponentTransfer on the CPU
To improve rendering performance, Firefox version 92.0 and later attempts to o�oad

image rendering to the GPU. This GPU-based rendering creates a challenge for adversaries

seeking to exploit vulnerabilities in the CPU implementations of �lter elements, as these

vulnerable implementations are bypassed. We describe how to overcome this issue by

forcing Firefox to execute �lter elements on the CPU instead.

4.2. Leaking Pixels 59

Table 4.1: Filter Execution Location:
List of �lter elements. Filter elements marked 3 have a GPU implementation

and elements marked 7 do not. feImage and feMerge use a separate system

that is out of scope for this work and are marked —.

Filter Element GPU Support
feBlend 3

feColorMatrix 3

feComponentTransfer 3

feComposite 3

feConvolveMatrix 7

feDi�useLighting 7

feDisplacementMap 7

feFlood 3

feGaussianBlur 7

feImage —

feMerge —

feMorphology 7

feO�set 3

feSpecularLighting 7

feTile 7

feTurbulence 7

Filter Elements without GPU Implementations. Although Firefox o�ers GPU-based

implementations for many �lter elements, some �lter elements are still supported only

via CPU-based implementations; see Table 4.1 for a complete list. One example is

feGaussianBlur, which applies a Gaussian blur (Waltz and Miller, 1998) to an image.

However, none of these CPU-only �lter elements exhibit data-dependent memory access

patterns capable of leaking image data into the cache.

Forcing CPU Computation. Unable to construct an attack using �lters with only CPU-

based implementations, we explore methods to force Firefox to fall back to executing

feComponentTransfer on the CPU. To this end, we examine Firefox’s behaviour when

60 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

combining �lter elements, particularly mixes of CPU- and GPU-based �lters.

We �nd that when feComponentTransfer is combined with feGaussianBlur, both

�lters execute on the CPU.
1

Moreover, we �nd that this pattern holds consistently: if the

last �lter in the stack is CPU-based, the entire �lter runs on the CPU, regardless of how

many GPU-based �lters are included.
2

Our Filter. To exploit this behaviour, we use the �lter shown in Listing 4.1. It consists

of an feComponentTransfer �lter element (Lines 2–6), whose output is fed into an

feGaussianBlur �lter element (Line 7). Since Firefox lacks a GPU implementation for

feGaussianBlur, it falls back to the CPU implementation for that �lter. Consequently,

feComponentTransfer is also executed using its CPU-based implementation as shown

in Listing 4.1. The choice of feGaussianBlur is arbitrary – any other CPU-only �lter

could be used to force �lter execution on the CPU.

Chrome. Chrome exhibits behaviour similar to Firefox, preferring to execute

feComponentTransfer on the GPU. While we could not identify a method to force

Chrome to run feComponentTransfer on the CPU, it does maintain an extensive GPU

blocklist that disables various GPU acceleration features on speci�c hardware con�g-

urations. These con�gurations include devices with outdated drivers, systems running

Windows Vista or earlier, Linux machines with third-party drivers, and MacOS devices

without a GPU on the allowlist (Chromium Project, 2023). Consequently, an attacker

would be limited to targeting victims using devices in one of these restricted con�gur-

ations. In our experiments, we simulate this scenario by launching Chrome with the

--disable-gpu �ag, which disables GPU support entirely.

Signal Ampli�cation. Cache attacks have a limited measurement frequency, which

restricts their ability to distinguish between rapidly occurring events (Allan et al., 2016;

Purnal et al., 2021). Our goal is to recover an image by measuring �lter memory accesses

with a cache attack. However, the �lter operates too quickly – it performs memory

accesses every few CPU cycles, while a typical cache attack requires hundereds or even

1
We note that if the �lters are combined in the reverse order feComponentTransfer is executed on

the GPU.

2
We note that explicit linking of �lter-elements using in attributes interferes with this behaviour and

prevents GPU-based �lters from executing on the CPU.

4.3. Recovering Pixels 61

thousands of cycles per measurement (Allan et al., 2016; Yarom and Falkner, 2014; Liu

et al., 2015; Purnal et al., 2021).

Previous works have explored methods to reduce the execution speed of the transmit-

ter (Allan et al., 2016; Aldaya and Brumley, 2022; Gullasch et al., 2011; van Bulck et al.,

2017; Moghimi et al., 2017), but these techniques rely on features unavailable to JavaScript,

so they cannot be used in the attack. Instead, we build on prior research (Andrysco et al.,

2015; Kotcher et al., 2013; Stone, 2013) that stretches the image to create copies of each

pixel forcing the �lter to perform repeated memory accesses. Since Firefox breaks the

screen into 256ˆ256 px tiles, we stretch each pixel horizontally by 256 times and vertically

by an amount that depends on the number of pixels recovered simultaneously.

4.3 Recovering Pixels
In the previous section, we construct the transmitter side of our pixel-stealing attack. This

section shifts focus to the receiver side.

First, we explain how to prepare for mounting a cache attack and then describe the

speci�c cache attack we employ. Our goal is to build a fast attack that enables a high

data transfer rate. To achieve this goal, we use Prime+Probe (Osvik et al., 2006; Liu et al.,

2015; Percival, 2005). Then we explain how we synchronise the transmitter and receiver,

followed by an evaluation of the pixel recovery rate, and concluding with a comparison

to existing works.

4.3.1 Detecting Transmitter Communications
Unlike previous �lter-based attacks (Andrysco et al., 2015; Kotcher et al., 2013; Stone,

2013), our approach measures leakage concurrently with �lter execution. However, the

attacker cannot immediately determine whether a given cache measurement corresponds

to memory activity of a �lter or of some unrelated process running on the machine.

In this section, we explain how to distinguish cache measurements that represent

transmitter communications from noise generated by other processes. We then show

how this ability to detect transmitter activity enables the establishment of a reliable

communication channel. We begin by assuming the attacker knows which cache sets to

monitor and subsequently describe how these sets can be identi�ed.

62 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

Adding the preamble. To detect the start of a transmission, we employ a standard

communication technique by introducing a packet preamble. The preamble serves two

purposes: �rst, it enables the receiver to identify the beginning of the transmission; second

because its content is known, it allows the receiver to synchronise its clock rate (which

is based on a free-running counting thread) to the rate of the sender. Recall that the

signal is encoded as cache activity by applying an attacker-controlled �lter over a page

containing victim content. We insert the preamble by prepending a known image to the

page, positioned just before the victim content so that the �lter processes the preamble

�rst, followed by the sensitive information.

1 <div style="filter: url(#filter_id);">
2
3 <div>
4 <!-- sensitive content -->
5 </div>
6 </div>

Listing 4.3: Applying a preamble:
The �lter is applied to page elements in their rendering order. We add an

image before the sensitive content so that when the �lter is applied to both,

it �rst produces a known memory access pattern that can be detected.

Listing 4.3 illustrates how the preamble is added to the attacker webpage. Line 1

applies the �lter to both the preamble and the sensitive content. Line 2 displays the

preamble image on the screen, while Lines 3–5 display the sensitive content. Because

the �lter processes the image �rst horizontally, then vertically, it will �rst operate on the

preamble before processing the sensitive content.

Detecting the preamble. With the transmitter set to send a preamble, we now focus

on detecting it at the receiver. Because the exact rate of the receiver’s counting thread

is unknown to the attacker and may vary over time, it is not possible to directly search

the side-channel trace for the preamble, as the signal may be stretched in time by an

unknown factor. Instead, we search for the preamble across multiple potential stretching

factors. To speed up this process, both the preamble and the trace are �rst processed using

4.3. Recovering Pixels 63

run-length encoding. In this representation, time stretching corresponds to multiplying

by a constant factor. Once the preamble is detected, the attacker gains knowledge of both

the frame start time and the correct data rate for sampling the transmitted data.

We implement the detector as follows: the input signal �rst passes through a low-pass

�lter to remove high-frequency noise. Afterwards, the �ltered samples are compared

against a threshold to classify them as cache hits or cache misses. The resulting trace

is then run-length encoded, and �nally, a substring search is performed to locate the

preamble. Figure 4.4 illustrates an example of cache activity measured by our attack, both

before and after �ltering the signal.

0 20 40 60 80 100 120
0

200

400

600

800

1,000

Approximate Time (µs)

P
r
o

b
e

T
i
m

e

(a) Raw Data

0 20 40 60 80 100 120

Approximate Time (µs)

A
c
t
i
v
i
t
y

(b) After Filtering

Figure 4.4: Preamble Memory Access Patterns:
Memory access patterns of an SVG �lter when rendering a preamble image

that encodes the sequence 101011101010001. Recorded using Prime+Probe
then �ltered with a low-pass �lter and thresholded with a value of 300.

64 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

Packet Payload. Our attack can be con�gured to leak varying numbers of pixels sim-

ultaneously, depending on the trade-o� chosen between speed and error rate. Each

�lter invocation e�ectively transmits a ‘packet’ of side-channel data, beginning with the

preamble followed by the sensitive payload.

Identifying The Target Set. Until now, we have assumed that the attacker already

knows which cache set is used by the �lter processing code and only needs to detect when

data transmission occurs. To identify the cache set used by the �lter, the attacker �rst

constructs an eviction set for each cache set using the technique described by Vila et al.

(2019).

After constructing all eviction sets, the attacker repeatedly applies the �lter to the

preamble. Then, for each eviction set, the attacker uses Prime+Probe with the eviction set

to measure memory activity on the system. The attacker measures a trace long enough to

include one invocation of the �lter then searches the recorded trace for the preamble. Upon

detecting the preamble, the attacker records the corresponding eviction set, eliminating

the need for this calibration in future measurements. If the preamble is not detected, the

attacker moves on to the next eviction set.

4.3.2 Evaluation
In the previous section, we describe the �nal steps for detecting cache leakage from

feComponentTransfer. In this section, we evaluate how varying the payload size, the

time needed to identify the target cache set, and the presence of noise a�ect the leakage

rate and accuracy of the attack.

Throughout this section, we mount our pixel-stealing attack on the pixel-art Firefox

logo shown in Figure 4.5 (�rst image on the left). We start by evaluating the speed and

accuracy trade-o� when selecting payload size. Then we evaluate the capability of the

attack to �nd the signal in the cache. Finally, we evaluate the attack under more realistic

conditions, including an additional concurrent workload.

We use Prime+Probe to measure the �nal entry of the feComponentTransfer �lter

table, corresponding to indexes 192–256, and ignore accesses to any other indexes. For

each pixel, if access to this cache line is observed, we assume that index 256 of the table

was accessed; otherwise, we assume index 0 was accessed. Under these assumptions,

4.3. Recovering Pixels 65

Figure 4.5: Recovered Images:
Pixel-art Firefox logos were recovered using our pixel-stealing attack. From

left to right: original image, ideal leakage, and actual leakage with payloads

of 1, 4, 8, and 32 pixels.

Figure 4.5 (second image from the left) illustrates what the recovered image would look

like if there were no errors in the cache channel.

Varying Payload Size

First, we conduct an experiment to explore the trade-o� between speed and accuracy

when selecting the payload size. We measure the time required to recover the entire image

after the attack setup has been completed (i.e., setup times are excluded). We recover

images with packet sizes of 1, 4, 8, and 32 pixels. For each packet size, we perform 100

recovery attempts and report the median elapsed time and median error rate. Figure 4.5

(third to sixth images from the left) shows representative recovered images for each packet

size.

The primary type of error introduced is a skewing of pixel locations in the recovered

image. This skew occurs because the attack leaks a vertical column of pixels all at once –

limited to the number of pixels that can �t within a single packet. If the attack misses a

pixel in the signal then subsequent pixels become o�set. Moreover, these errors become

more common as the packet size increases.

Figure 4.6 illustrates quantitative results. We use the Levenshtein distance (Levenshtein,

1966) to measure the error rate and report the median value from 100 measurements. The

median runtime to leak the entire 25px by 25px image across the three colour channels

(red, green, and blue) is 116 s (16px per second) at the lowest speed to 7 s (267px per

second) at the fastest. As expected, the median error rate increases as the speed increases,

starting at 1% at the lowest speed and increasing to 10% at the highest speed.

66 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

32168421

0

50

100

Pixels Per Packet

A
t
t
a
c
k

T
i
m

e
(
s
)

32168421

0

0.1

0.2

E
r
r
o

r
R

a
t
e

Attack Time

Error Rate

Figure 4.6: Packet Size vs. Time & Error Rates:
Data showing that increasing the number of pixels transmitted per packet

reduces redundancy and therefore increases error rate, however it also

signi�cantly decreases attack time.

Identifying the Target Set

Thus far, our evaluation has assumed an attacker prepared to leak an arbitrary number of

pixels. We now measure the time required to setup the attack.

Setup. To identify the target cache set, we use the technique described in Section 4.3.1.

To validate our results, we patch Firefox to output the addresses of each eviction set and

to output the address of the �lter tables. We then use the methods of Maurice et al. (2015)

to verify whether our attack correctly identi�es �lter memory accesses in the cache.

Method. Since false detections of the transmitted preamble are possible, we record

multiple traces per cache set. If the preamble is detected at least once during these

recordings, we mark the set as a candidate. We then record the same number of traces

again from each candidate set. If the preamble is detected in at least three of these

subsequent traces, we con�rm the set as the target. This process is repeated 21 times

for each number of recorded traces, and the median identi�cation time and accuracy are

reported in Table 4.2. The median time to identify the target set ranges from 372 to 1,257

seconds, with 48% to 77% of runs correctly identifying the target set on the �rst iteration

through all eviction sets.

4.3. Recovering Pixels 67

samples Time (s) Accuracy

40 1257.59˘169 77%

30 999.56˘152 67%

20 644.57˘115 56%

10 372.39˘60 48%

Table 4.2: Time To Identify a Target Set:
The median time in seconds to identify a target set and the portion of

runs that identify the target set after searching through the cache once

(Accuracy).

Figure 4.7: E�ect of system noise on leakage:
From left to right: The original image, ideal leakage, a recovered image on

a system without noise, and a recovered image on a system with noise.

System Noise

Finally, we evaluate our attack in a more realistic scenario where the victim has multiple

browser tabs open. We use the same experimental setup as above but we open a new

tab that plays a YouTube video. Figure 4.7 illustrates a representative qualitative result,

showing a slight degradation in the quality of the recovered image. Over 100 runs,

compared with earlier results, the median runtime increases to 476 seconds (4.09ˆ) with

a median error rate of 2.72% (2.68ˆ).

68 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

Work Side-Channel Measurement Target Mitigated Speed

Stone (2013) Filter Optimizations Page Rendering 3 10

Kotcher et al. (2013) Filter Optimizations Page Rendering 3 <1

Andrysco et al. (2015) Subnormal Floats Page Rendering 3 16

Kohlbrenner and Shacham (2017) Subnormal Floats Page Rendering 3 60

Wang et al. (2023) Power Consumption Page Rendering 7 3

Taneja et al. (2023) Power Consumption Page Rendering 7 <1

This Work Memory Accesses Memory Accesses 7 267

Table 4.3: Comparing Pixel-Stealing Attacks:
We report the channel that information is leaked through, what each work

measures to extract information from the channel, whether the attack has

been mitigated, and the speed of the attack in bits per second (approxim-

ately).

4.3.3 Comparisons to Existing Works
Table 4.3 compares the speed of our attack with other cross-origin pixel-stealing attacks.

All listed works leverage timing side-channel attacks on �lters to extract cross-origin

pixels. We compare the leakage channel used, the method each work employs to extract

information from that channel, whether the attack has been mitigated, and the attack

speed measured in pixels per second (using the �gure reported by the work).

Earlier works exploit optimisations within the �lters themselves, whereas later works,

including our own, leverage leakage through microarchitectural side channels.

All previous attacks extract side-channel information by measuring the total time

taken to render the page, thereby indirectly inferring the �lter execution time. In contrast,

our attack obtains side-channel information by measuring �lter memory accesses. This

fundamental di�erence enables us to achieve speeds that surpass the display refresh rate.

Like recent pixel-stealing attacks, our method remains unmitigated. Fortunately,

generic countermeasures against cross-origin pixel-stealing attacks have been proposed,

and these mitigation strategies would neutralize all such attacks, including the attack

presented in this work. We discuss these countermeasures in greater detail in Section 4.6.

4.4. From Pixel Stealing to Text Stealing 69

4.4 From Pixel Stealing to Text Stealing
We now demonstrate how to extend our basic pixel-stealing attack to create a text-stealing

attack capable of recovering sensitive text content from third-party websites. We adapt

previous work by Stone (2013), which targets monospaced fonts that are easily pixelated,

to modern vector-based proportional-width fonts with kerning.

Figure 4.8: Stretching Pixel vs. Vector Content:
Pixel-based content remains pixelated after stretching (left), whereas vector-

based content is resampled and remains smooth (right). Both regions in the

original images are the same size: 3ˆ3px.

Text Rasterization. Our pixel-stealing attack scales an image to isolate and amplify

individual pixels. Pixel-based content can be scaled in a way that preserves the discrete

structure of the original pixels (Figure 4.8 left). In contrast, vector-based content, such as

text, is represented using mathematical expressions that are sampled to generate an image.

When vector graphics are scaled, the scaling is applied to the underlying mathematical

expression, and the image is then re-sampled at display resolution (Figure 4.8 right).

Owing to this di�erence, applying transformations to isolate the colour of a single pixel is

signi�cantly less e�ective for text.

Pixel Stealing on Vector-Based Content. To illustrate the problem, we perform our

pixel-stealing attack on a classic pangram and present the recovered text in Figure 4.9.

Compared with pixel-based content, the recovered vector-based text shows consider-

ably more visual degradation, even when the attack recovers one pixel at a time. Despite

the visual degradation, the phrase remains readable owing to the redundancy inherent

70 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

Figure 4.9: Naive Text Stealing Results:
Recovery of the phrase ‘the quick brown fox jumps over a lazy dog’ at 1, 2,

and 4 pixels per packet.

in English text. However, this redundancy is often absent in the types of sensitive in-

formation attackers typically target, such as names, identi�cation numbers, or passwords,

which are short and contain little to no redundancy.

A natural solution to this problem is to sample the image at a higher resolution to

minimise the degradation. However, doubling the resolution requires four times as many

samples, because the number of pixels grows with the square of the side length. We ask:

Is there a better technique to extract text?

Stone’s Method. We answer this question in the a�rmative by building upon the work

of Stone (2013). Stone uses a pixel-stealing attack to recover text character by character.

Rather than naively leaking the entire image of the character, Stone carefully chooses pixels

to reveal so that each revealed pixel eliminates roughly half of the possible characters.

Unfortunately, Stone’s technique was designed to leak rasterised monospaced fonts, not

proportional-width fonts that are more commonly used to display text.

Choosing a ‘Pixel’. We begin by addressing the challenge of identifying the colour of

‘pixels’ in vectorised content. The key observation that enables the adaptation of Stone’s

method to vector-based text is that we can isolate arbitrary rectangular regions of the text,

including rectangles with non-integer coordinates. If we ensure that these rectangular

regions are entirely inside or entirely outside a character, then that rectangle will only

contain a single colour and we will not get any visual artefacts after scaling. Figure 4.10

illustrates example regions for the letters ‘A’ through ‘F’.

4.4. From Pixel Stealing to Text Stealing 71

Figure 4.10: Exmaple Regions:
A region that lies entirely inside or outside each of the letters ‘A’ through

‘F’ when rendered using the MS Sans Serif font.

Finding Regions. We identify such regions in an o�ine preprocessing step using Selen-

ium.
3

We randomly choose x and y coordinates and use a �xed width and height – on

the scale of one-millionth of a pixel. We render each character and scale this region to

the size of the screen. Finally, we take a screenshot of the browser then verify that the

screenshot contains only a single colour and is artefact free.

After collecting enough regions to identify each character, we use a greedy search

algorithm to minimise the number of regions. We select the region which provides the

most information, the region that best splits the alphabet into two equal sets of characters,

then store it in a list. We repeat this process until every character can be uniquely identi�ed.

While this approach does not guarantee the theoretical minimum number of regions, in

practice, we �nd that it produces a small list of regions suitable for the attack.

Kerning. While this approach enables us to recover the �rst character, the location of

the next character is hard to predict. Speci�cally, font rendering engines feature kerning
and will move some characters closer together to achieve a better visual appearance.

With kerning, the position of a character depends on the preceding characters. Although

kerning can involve combinations of three or more characters, this is rare and so we

restrict our analysis to the common case of two-character kerning.

To account for kerning during region collection, we randomly insert a character before

every character in the alphabet. This change yields a list of regions for every possible pair

of characters. We then modify our recovery algorithm to leak subsequent characters by

3https://www.selenium.dev/

https://www.selenium.dev/

72 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

using regions obtained with kerning – speci�cally, we use regions that begin with the

previous character.

4.4.1 Text Stealing Results
We demonstrate our text-stealing technique in a PoC attack that recovers cross-origin

text content – the victim’s Wikipedia username. Since this is a cross-origin attack, we

deploy our two-page architecture as described in Section 4.1 and manually interact with

the page to allow the attack to open a second page in a new tab.

Identifying Username Location. To steal the username, we �rst need to locate it

on the page. We start by manually opening the page in developer mode and using

getBoundingClientRect to �nd the rough location of where the username begins. Then,

we use Selenium to automatically re�ne the location by applying small adjustments and

simulating the attack using screenshots. This is necessary because the resolution of

getBoundingClientRect is not high enough to accurately locate the username.

Stealing the Username. Finally, we execute the attack to validate that we can success-

fully steal text in a cross-origin setting and recover the username of the account.

Figure 4.11: Layout of Wikipedia Username.

4.5 History Sni�ng
In this section, we demonstrate how our pixel-stealing attack can be applied to history

sni�ng. We begin by describing a straightforward approach that tests individual URLs

or small groups of URLs. We then introduce a batch testing method that improves the

4.5. History Sni�ng 73

sampling rate when the number of visited URLs is expected to be low relative to the total

number of possible URLs.

1 .leak {
2 display: inline-block;
3 width: 1px;
4 height: 1px;
5 background-color: black;
6 font-size: 0;
7 }
8

9 .leak:visited {
10 background-color: white;
11 }

Listing 4.4: History Sni�ng CSS Style:
The style renders each URL as a single pixel. The pixel is black if the URL

has been visited by the user before and white if it has been visited.

4.5.1 Straightforward History Sni�ng
Previous history-sni�ng attacks rely on the observation that the colour of a hyperlink

can indicate whether it has been visited (Kotcher et al., 2013; Stone, 2013; Andrysco et al.,

2015; Huang et al., 2020; O’Neal and Yilek, 2022). Our attack builds on the same principle.

To implement the history-sni�ng attack, we �rst create a pixel whose colour re�ects

whether a speci�c URL has been visited. To achieve this e�ect, the attacker page includes

a CSS style similar to the example shown in Listing 4.4.

The �rst rule styles each link as a 1ˆ1 pixel box with a black background. The second

rule uses the :visited selector to change the background to white, if the link points to a

URL previously visited by the victim.

Once such a pixel is created to re�ect whether a URL has been visited, we can apply our

pixel stealing attack to recover the colour of the pixel and thereby determine whether the

victim visited the website. We can leak multiple URLs simultaneously, by repeating these

74 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

steps to generate individual pixels with colours that reveal whether each corresponding

URL has been visited. After revealing whether each URL has been visited, we update

the href attribute of each link to point to a new URL, which prompts the browser to

recalculate and update the appearance of each link.

4.5.2 Set Query Optimisation
History-sni�ng attacks do not directly expose a victim’s browsing history; instead, they

leverage the browser as an oracle to determine whether a speci�c URL has been previously

visited. To recover a large portion of the victim’s browsing history, the attacker queries

this oracle repeatedly. However, this process is computationally expensive, as the oracle

must be queried for each URL independently.

To reduce this cost, we develop the set query method that exploits the underlying

mechanisms of our pixel stealing attack to query over a thousand URLs at once. Recall that

our pixel-stealing attack uses Prime+Probe to measure data-dependent memory accesses

by a �lter. However, because memory access occur much faster than we can perform

Prime+Probe measurements, we had to reduce the speed of the �lter by stretching the

image.

Blurring Measurements. If we did not stretch the image, then the �lter would process

di�erent pixels within a single Prime+Probe measurement ‘blurring’ the e�ects of several

distinct memory accesses together. In each measurement, the attack detects access to a

speci�c memory location but it cannot determine the number of accesses to that location

or the order of accesses to that location.

Typically, blurring memory accesses together in this way is undesirable because it

loses information. For example, a set of pixels that contains exactly one white pixel results

in the same measurement as a set of pixels that contains several white pixels. In both

cases, the attack detects that the location in memory for white pixels was accessed, but

cannot determine the number of memory accesses or the order of memory accesses to that

location. Because the attacker cannot distinguish between these two cases, they cannot

determine which pixels are white, they only learn that one or more pixels are white.

Leveraging Blurring. While Prime+Probe cannot determine the number of memory

accesses to a location, it can distinguish zero accesses from one or more accesses. The key

insight is that if we expect most URLs to be unvisited, we can group these URLs together

4.5. History Sni�ng 75

and use a single measurement to con�rm whether all the URLs are unvisited. Figure 4.12

illustrates example measurements with no visited links and some visited links.

Speci�cally, we encode unvisited links as black pixels and visited links as white pixels

then monitor �lter memory accesses. If no white pixels are observed, then we conclude

that none of the links have been visited and move onto the next set to query. Otherwise,

we split the set into two subsets and perform the same measurement on each subset. If a

subset contains at least one visited URL, we continue to recursively apply this process

until we either reach a subset without any visited URLs or a subset that contains only a

single URL that is visited.

When exactly one URL is visited, this binary search allows us to identify it with

Oplog nq samples. However, as the number of visited URLs increases, the required samples

approaches Opn log nq, making it e�cient in such cases to use the simple method, which

queries each URL individually and always identi�es the visited URLs in Opnq samples.

Method Selection. We address this issue by dynamically switching between the simple
and set query methods based on whether the website is in the Alexa Top 1,000 most visited

websites. For websites in this list, we assume a high likelihood that the URL has been

visited and use the simple method. For all other websites, we use the set query method.

4.5.3 Experiment Description
In this section, we describe the experiments conducted to evaluate the performance of

our history-sni�ng attack.

Fabricating History. We begin by fabricating browsing history. We sample from the

Alexa Top 50,000 websites, so that popular websites are more likely to be included in the

fabricated history.
4

We then use Selenium to populate the browser history by opening

each website. Since not all websites will be stored successfully in the browser history,

either because the website failed to load or because it redirected the browser elsewhere,

we verify the list of websites inserted into the history by simulating the attack. Speci�cally,

we navigate to a webpage that renders the list of websites as black or white pixels using the

4
We include websites in the history with a probability of roughly

1
n where n is the position of the

website in the Top 50,000.

76 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

0 5 10 15 20 25 30
0

200

400

600

800

1,000

Approximate Time (µs)

P
r
o

b
e

T
i
m

e

(a) No Visited Links

0 5 10 15 20 25 30
0

200

400

600

800

1,000

Approximate Time (µs)

P
r
o

b
e

T
i
m

e

(b) Some Visited Links

Figure 4.12: History Sni�ng Memory Access Patterns:
Access Patterns for the Set-Query Attack.

style shown in Listing 4.4 then take a screenshot to obtain the ground truth for evaluating

the attack.

History Sni�ng. The history-sni�ng attack is performed over the same set of 50,000

websites. As described earlier, we use the simple method for the top 1,000 websites and

split the remaining 49,000 websites into batches of 1,000 and use the set query method to

recover them.

4.6. Countermeasures 77

4.5.4 Results
Table 4.4 summarises the results of our experiments. For each test, we vary the number

of samples and measure its a�ect on runtime, recall (the proportion of websites in the

victim’s history that were identi�ed by the attack), and accuracy (the proportion of

websites identi�ed as visited that were in the victim’s history). We only evaluate the set
query method, as the simple method’s performance is identical to regular pixel stealing

analysed in Section 4.3.2.

4.6 Countermeasures

Total Cookie Protection. Total Cookie Protection is a new feature that enforces stricter

control over HTTP cookies by ensuring that each requested cookie is only sent to the

domain that originally set it. Requests that violate this policy are blocked. Mozilla enabled

Total Cookie Protection globally for all users on June 14, 2022. This update applies to

Firefox versions starting from Firefox 101 and all versions of Firefox Nightly but does not

a�ect any versions of Firefox ESR. While this feature e�ectively mitigates all cross-origin

pixel-stealing attacks, it does not impact the history-sni�ng attack, because the rendering

of visited links is independent of cookies. Safari implements a similar countermeasure

called Intelligent Tracking Protection, which also prevents cross-origin pixel-stealing

attacks.

Constant Time Programming. Constant-time programming is a coding style designed

to prevent the use of constructs that unintentionally leak secret information (Osvik et al.,

2006; Brickell et al., 2006; Barthe et al., 2014). Speci�cally, secret values must not be used

in the conditions of control �ow statements, as memory access addresses, or as arguments

to variable-time instructions (e.g., division). While these constraints are highly e�ective at

preventing side-channel leakage, they often introduce signi�cant performance overhead

and can be di�cult or impossible to implement correctly in high-level languages. We

recommend this approach to browser vendors for any fallback �lters that are executed on

the CPU.

frame-ancestors. The frame-ancestors directive of the Content-Security-Policy
is a widely supported feature that allows developers to prevent their webpages from being

78 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

loaded within iframe s, thereby blocking malicious embedding. While this directive does

not prevent information leakage from the webpage itself, it stops malicious sites from

embedding and leaking content from otherwise safe victim webpages. Considering that

this technique also protects against other attacks such as click-jacking (Rydstedt et al.,

2010; Huang et al., 2012), we recommend that all website operators implement it. For

website operators that need to support embedding within arbitrary webpages, removing

sensitive information when the content is embedded is advisable.

4.7 Limitations & Future Work

Pixel Stealing. Our pixel-stealing attack is limited to environments where SVG �lters

are executed on the CPU rather than the GPU. In Firefox, this condition applies to all

environments. In Chrome, the attack is only applicable if the system is listed on the

Software Rendering List (Chromium Project, 2023). Additionally, our attack is limited to

Intel CPUs featuring inclusive caches. In principle, the attack could likely be extended

to CPUs with non-inclusive caches, potentially by exploiting coherence directories (Yan

et al., 2019), we leave this extension for future work.

Text Stealing. Our text-stealing attack is limited to scenarios where the attacker can

correctly guess the font used by the user. If the user changes the font or uses an unknown

font, they are not vulnerable. While the technique can theoretically extend to languages

with very large alphabets, such as Mandarin, in practice, the attack becomes less practical

as alphabet size increases.

Cross-Origin Content. Our attack assumes that cross-origin content does not employ

security measures such as COEP/COOP, X-Frame-Options, or the frame-ancestors dir-

ective. Unfortunately, many websites still do not implement these protections and remain

vulnerable to our attack (Foundation; The HTTP Archive; Helme; Lavrenovs and Melon,

2018; Karopoulos et al., 2021; Buchanan et al., 2018). In addition, we assume that the

browser either does not support or has not enabled Total Cookie Protection or similar

countermeasures.

Theoretical Maximum Bitrate. Our pixel-stealing attack, in its maximum pixels-per-

packet con�guration, has a theoretical maximum throughput of 1920 bits per second – 32

4.8. Conclusions 79

bits per packet and 60 packets per second. In practice, the attack achieves a maximum

speed of 267 bits per second. While this practical throughput makes it the fastest side-

channel-based pixel-stealing attack to date, it still reaches only about 14% of the theoretical

maximum.

This limitation arises partly because the attack cannot dedicate all its time to recording

cache activity; it must also allocate time to analyse recorded traces and to identify and

extract packets. Our measurements indicate that approximately half of the attack runtime

is spent analysing cache traces.

In principle, the analysis could be o�oaded to a separate thread to allow more con-

tinuous recording of cache activity. However, naive attempts to implement this simply

shifted the bottleneck to message-passing overhead between threads. We leave a more

thorough investigation of e�cient multi-threaded collection and analysis methods for

future work.

In addition to analysis overhead, we �nd that the attack fails to receive a quarter of all

packets on average, even after accounting for missed packets transmitted during analysis.

We attribute this loss to system noise obscuring the preamble, making it unrecognisable

by our signal processing pipeline. Although deploying a more robust signal processing

pipeline with advanced techniques could capture more packets, it is unclear whether the

bene�ts would outweigh the additional packet loss due to increased analysis time. We

leave a more thorough investigation of this trade-o� to future work.

4.8 Conclusions
In this chapter, we present Pixel Thief, a cache-based pixel-stealing attack targeting

Firefox’s SVG �ltering engine. Despite several mitigation e�orts, we demonstrate that

pixel stealing remains not only possible but also highly practical.

We develop an asynchronous architecture that allows the attacker to measure cache

leakage in parallel with SVG �lter execution. This approach enables multiple meas-

urements per �lter execution, increasing the data rate and ultimately overcoming the

limitations imposed by screen refresh rates. In addition, we distribute the asynchronous

architecture across two webpages to bypass cross-origin isolation. This technique may

be applicable to other microarchitectural attacks, casting doubt on the e�ectiveness of

cross-origin isolation as a countermeasure for microarchitectural side-channel attacks.

80 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

Fortunately, browser vendors have already begun isolating cookies from iframes.

Although these features are mainly designed to mitigate tracking threats, they also help

prevent cross-origin pixel-stealing attacks. Unfortunately, same-origin pixel-stealing

attacks, such as the history-sni�ng attack presented in Section 4.5, remain una�ected;

however, cryptographic constant-time techniques can likely be applied to SVG �lters with

minimal performance impact to address these attacks.

Thus far, this thesis has focused on traditional microarchitectural side-channel attacks,

where the target program, the browser in this case, unintentionally leaks sensitive data

because the program exhibits data-dependent behaviour which the adversary indirectly

measures. The next two chapters investigate transient-execution attacks and their ability

to leak sensitive data even when the program does not directly exhibit data-dependent

behaviour.

4.8. Conclusions 81

Fixed Sample Count

Samples Runtime (s) Recall Precision

1 26.27 10% 3%

2 22.75 0% 0%

3 91.21 32% 26%

4 81.62 36% 9%

5 158.26 42% 42%

6 165.71 47% 26%

7 286.61 40% 60%

8 254.34 55% 47%

9 354.77 52% 59%

10 354.62 52% 56%

11 441.97 47% 57%

12 420.86 64% 65%

13 525.45 47% 80%

14 477.48 68% 73%

Table 4.4: Set Query Accuracy Results:
Accuracy of the set query method using di�erent measurements counts

and a majority vote. Recall is the proportion of websites that the attack

was able to recover from the victim history. Precision is the proportion of

websites claimed by the attack to be in the victim history that were actually

in the victim history. Reported time only includes the time to recover the

complete history and excludes pre-attack setup time.

83

Chapter 5

Mounting a Transient Execution
Attack on Modern Browsers

To improve performance, modern processors include branch prediction units that predict

the outcome of branch instructions. When a branch instruction is encountered, the branch

predictor predicts whether the branch will be taken or not, allowing the processor to

continue executing the program speculatively. If the prediction is correct, the processor

gains a performance advantage by avoiding the need to wait for the branch outcome.

However, if the prediction is incorrect, the processor will need to squash the incorrect

execution and re-execute the program along the correct path.

Kocher et al. (2019) were the �rst to demonstrate how to exploit this behaviour.

Speci�cally, they showed how an adversary can use JavaScript to bypass bounds checks

on array accesses, resulting in out-of-bounds memory access. This ability to bypass

bounds checks via JavaScript posed a signi�cant problem for many web browsers, as they

commonly relied on these bounds checks and other software-level security features to

isolate websites rendered within the same process. Recognising the risk posed by transient-

execution attacks, browser vendors have largely adopted new security architectures that

isolate websites into separate processes (Reis et al., 2019), even when these sites are

embedded together on the same webpage via iframes. While these process boundaries

do not prevent malicious JavaScript from performing transient-execution attacks, they

limit accessible data to within the process.

Chrome was the �rst browser to implement such an architecture owing to its exist-

ing multi-process architecture. To further limit accessible memory with out-of-bounds

memory accesses, Chrome partitions the address space to isolate each webpage.

84 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

These security controls use the same-site policy to determine when to isolate webpages

from each other. Unlike the same-origin policy which considers the entire domain, the

same-site policy only considers the �nal portion of the domain – the E�ective Top Level

Domain Plus One (eTLD+1). Previous studies have demonstrated vulnerabilities that lie

in the gap between these two policies (Squarcina et al., 2021; Bortz et al., 2011) which

naturally leads to the question: Can transient-execution attacks exploit the same gap on
modern browsers despite deployed countermeasures?

This chapter addresses this question by presenting Spook.js, a transient-execution

attack capable of extracting sensitive information from co-resident webpages despite site

isolation and address-space partitioning. Section 5.1 outlines the challenges involved in

mounting transient-execution attacks on modern browsers and explains how we overcome

them. Sections 5.2 and 5.3 present several attack scenarios in which usernames, passwords,

credit cards numbers, and other personal information are extracted from various websites,

password managers, and extensions. Section 5.4 shows that other Chromium-based

browsers are vulnerable to Spook.js with minimal adaptation. Finally, Sections 5.5 and 5.6

conclude the chapter with a discussion of countermeasures and limitations.

5.1 Spook.js: Mounting Transient Execution Attacks
in Chrome

We now present Spook.js, a JavaScript-based transient-execution attack capable of recover-

ing information across security domains running concurrently in the Chrome browser. In

addition to bypassing all side-channel countermeasures deployed in Chrome (such as low-

resolution timers), Spook.js overcomes several key challenges that remained unresolved

in previous works.

Site Isolation. The core principle behind site isolation is that it separates the attacker

and victim pages into separate processes. However, because this separation is enforced

at the site level (as opposed to the origin level), there is a gap between what the website

developers consider to be a website and what the countermeasures consider to be a website.

We introduce several methods that exploit this gap to consolidate di�erent websites into

the same process.

5.1. Spook.js: Mounting Transient Execution Attacks in Chrome 85

Address Space Isolation. Chrome uses pointer compression to limit the size of pointers

which also limits the amount of memory accessible to each pointer – even in cases where

an attacker can control the pointer. Chrome leverages this limitation in combination

with carefully arranging the address space to limit out-of-bounds memory accesses. We

intentionally misuse objects of one type with operations specialised for another type to

trigger transient type confusion to bypass this countermeasure.

Deoptimisation. As we use objects of the wrong type, the JavaScript engine will ‘de-

optimise’ the specialised code by replacing it with non-exploitable generic code capable

of handling both types. We adapt speculative hiding techniques to the browser to avoid

this deoptimisation.

Speculation Depth. Overcoming address space isolation and avoiding deoptimisation

requires executing many instructions transiently. We use evictions from the LLC to induce

a delay long enough to execute these instructions.

5.1.1 Website Consolidation
To mount transient execution attacks, both the attacker and target websites must reside

within the same address space. Chrome’s site isolation aims to prevent cross-site attacks

by segregating websites into separate processes. However, Chrome allows websites to be

consolidated into the same process according to the same-site policy. Speci�cally, if the

two websites share the same eTLD+1 domain then they are eligible for consolidation. We

now discuss methods to force consolidation between attacker and victim pages.

iframes. We �rst observe that consolidation can be achieved by embedding iframes within

a page from the same site. While this method is e�ective, it cannot be used on pages that

prevent rendering inside iframes, for example, by setting the X-Frame-Options header to

deny. Because many attacks exploit iframe vulnerabilities, setting this option is a widely

recommended security practice and is employed by many websites.

Memory Pressure. When under memory pressure, Chrome reduces memory usage by

consolidating pages from di�erent tabs, provided the pages originate from the same site.

Furthermore, once consolidation occurs, Chrome adds newly opened pages from into

existing processes rather than creating new processes for those pages, again provided the

pages originate from the same site. However, it is di�cult to build an attack around this

86 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

consolidation technique because the attack does not have enough control over memory

consumption across the entire browser.

Opening Windows. Finally, we observe that Chrome consolidates pages opened using

the window.open API when these pages share the same site. Although lacking stealth,

this method is reliable and does not su�er from the same limitations as the previous

consolidation techniques.

Experimental Results. In all cases, these methods allow an attacker operating on one

subdomain (e.g., attack.example.com) to consolidate their pages with content from a

separate subdomain (e.g., sensitive.example.com). We evaluate the e�ectiveness of each

method using Chrome 89.0.4389 on a machine with an Intel i7-7600U CPU and 8 GB of

RAM, running Ubuntu 20.04. We �nd that both the iframe and opening window methods

will always consolidate pages from the same site.

To evaluate the memory pressure method, we open several websites in di�erent tabs.

We �nd that opening 17 websites causes Chrome to begin consolidation. However, the

threshold for consolidation depends on the machine’s memory size. On a machine with

more memory we need to open more websites (e.g., 33 websites on a machine with 16 GB

of RAM).

5.1.2 Breaking Address Space Isolation
Chrome employs a pointer compression technique that represents pointers as 32-bit o�sets

from a �xed base address (Sheludko and Solanes, 2020). This base address de�nes an

isolate within which memory is allocated. Because pointers are represented as 32-bit

o�sets, instead of a full 64-bit address, the amount of memory accessible to each pointer

is limited. Chrome leverages this limitation as a security feature by carefully arranging

the address space so that memory accesses through compressed pointers are constrained

to their respective isolate.

In this section, we overcome this countermeasure using transient type confusion.

Speci�cally, we trick Chrome into accessing a malicious object as a typed array. Because

typed arrays use 64-bit pointers to refer to their underlying bu�ers, we can use the

malicious object to access arbitrary 64-bit addresses, bypassing Chrome’s partitioning

countermeasures. While type confusion attacks have been previously demonstrated in the

literature (Kiriansky and Waldspurger, 2018; Hadad and Afek, 2018; Kirzner and Morrison,

attack.example.com
sensitive.example.com

5.1. Spook.js: Mounting Transient Execution Attacks in Chrome 87

2021), to the best of our knowledge, this is the �rst demonstration of transient type

confusion attacks against the modern Chrome browser.

1 UInt8Array-access(array, index){
2 // check the type of array
3 if(array.type !== UInt8Array){
4 goto interpreter // handle wrong type
5 }
6

7 // compute array length
8 len = array.length
9

10 // check length is in bounds
11 if (index >= len) {
12 goto interpreter // Handle out of bounds
13 }
14

15 // compute pointer to backing storage
16 ptr = array.external + ((array.base + heap_ptr) & 0xFFFFFFFF)
17

18 // do memory access
19 return ptr[index]
20 }

Listing 5.1: Pseudocode for Array Accesses:
Pseudocode of operations performed by Chrome’s JavaScript engine during

array accesses.

Array Indexing. Consider the following JavaScript: array[index]. There are several

valid meanings for this expression that depend on the types of array and index. Chrome

optimises this expression by speculating that these types never change, enabling chrome

to replace generic code capable of handling any possible combination of types with

specialised code optimised to handle only a speci�c set of types.

88 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

For example, if array is a Uint8Array and index is an integer, then Chrome replaces

the generic code with specialised code similar to Listing 5.1. The code �rst checks whether

array is a Uint8Array (Line 3) then checks whether index is inside of the array (Line 11).

If both checks are successful, the code constructs a pointer to the array bu�er (Line 16)

and dereferences it with index (Line 19). If either check (Lines 3 or 11) fails, control �ow

returns to the interpreter, which handles the more complex generic cases.

header f0 f1 f2 f3 f4 f5 f6 f7 f8 f9

header other fields length external base

AttackerClass

Uint8Array

Figure 5.1: Compariing Memory Layout:
The memory layout of Uint8Array (top) and AttackerClass (bottom).

Ticks denote the boundaries of �elds, rectangles within each �eld denote a

byte, and colours are used to highlight �eld alignment across types.

Array Layout. Figure 5.1 (top) illustrates the memory layout of a Uint8Array object. The

layout begins with a header that identi�es the object type and includes other metadata. The

header is followed by several �elds that de�ne the array properties. Of particular interest

are the length, which tracks the number of elements in the array, and the external and

base �elds, which together form a pointer to the underlying array bu�er.
1

A Malicious Memory Layout. Recall that the goal of our attack is to trick Chrome into

accessing a malicious object as a typed array. Figure 5.1 (bottom) illustrates the layout

of this malicious object. AttackerClass consists of ten �elds named f0–f9. Because

1
Two �elds are used for legacy reasons.

5.1. Spook.js: Mounting Transient Execution Attacks in Chrome 89

these �elds are JavaScript properties, Chrome uses 32-bits to represent each �eld. Notably,

when we compare the layouts of AttackerClass with Uint8Array the f5 and f6 �elds

align with length, f7 and f8 with external, and f9 with base.

Type Confusion. Our attack works by training the processor to predict the outcome of

type checking branches within an array access (Listing 5.1 Line 3). When we later invoke

an array access on a malicious object, the processor follows this prediction which causes

the JavaScript engine to access the malicious object as though it were a Uint8Array,

treating the values of f7–f9 as though they de�ned a pointer to the array’s underlying

bu�er. Because we control every �eld of the object, we can manipulate the address to

access arbitrary process memory. Appendix A describes the precise method we use to

craft arbitrary pointers.

5.1.3 Avoiding Deoptimisation
The previous section described how we cause the processor to mispredict a type checking

branch within an array accesses to trigger an out-of-bounds memory access. Eventually

the processor will detect this mispredicted branch, squash the resulting incorrect execution,

and restart execution with the correct branch outcome. In this case, the branch correctly

identi�es that our object is not a Uint8Array and directs control �ow into the JavaScript

engine, which ‘deoptimises’ the array access by replacing it with a non-exploitable generic

code path.

We avoid this deoptimisation by adapting speculative hiding techniques (Lipp et al.,

2018; Mambretti et al., 2020; Göktas et al., 2020; Canella et al., 2019) to the browser

context. Speci�cally, we insert an additional branch that has the same behaviour as the

type checking branch. In the training phase, both branches are taken, and in the attack

phase, both branches are predicted as taken. However, when the processor detects the

misprediction, it will restart execution at this additional branch instead which enables us

to direct control �ow back into the attack.

Listing 5.2 presents the JavaScript code for the attack, which consists of four main

components, described below.

90 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

1 // Setup
2 let objects = new Array(128)
3

4 for (let i = 0; i < 64; i++) {
5 objects[i] = new Uint8Array(0x20)
6 objects[64 + i] = new AttackerClass(i)
7 collectGarbage()
8 }
9

10 let [index, set] = findSuitableObject(objects)
11 objects[index].f0 = 1
12

13 // Training
14 for(let i=0; i<10000; i++) gadget(0)
15

16 // Attack
17 objects[index].f5 = 1 // length (bottom 32-bits)
18 objects[index].f6 = 0 // length (top 32-bits)
19 objects[index].f7 = Lower32BitsOfAddress
20 objects[index].f8 = Upper32BitsOfAddress
21 objects[index].f9 = 0
22 set.evict() // Evicts object[index]
23 gadget(index)
24 side_channel.receive()
25

26 // Gadget
27 function gadget(i){
28 if(i < objects[index].f0) {
29 let object = objects[i]
30 let value = object[0]
31 side_channel.send(value)
32 }
33 }

Listing 5.2: Pseudocode for Speculative Type Confusion:

5.1. Spook.js: Mounting Transient Execution Attacks in Chrome 91

Setup. Lines 4–8 initialise an array of objects assigning some entries to Uint8Array
instances and others to AttackerClass instances. Line 7 triggers Chrome’s garbage

collector, by allocating many large bu�ers and allowing them to go out of scope, which

compacts the heap and reallocates previously initialised objects into contiguous memory

locations. Line 10 identi�es a suitable malicious object. Finally, Line 11 sets a value that

we will use to avoid deoptimisation later.

Training. The training stage has two goals. First, it provides ample opportunity for

Chrome to specialise the array access code in gadget to the code in Listing 5.1. Second, it

trains the processor to predict speci�c outcomes for branches within gadget (including

the branches in the array access). Line 14 achieves these goals by calling gadget 10,000

times with an index to a Uint8Array.

Attack. Lines 17–21 con�gure �elds f5 through f9 which correspond with the length,

external, and base �elds of a Uint8Array. Speci�cally, we set length to 1, external
to the target 64-bit address, and base to 0. Line 22 evicts the header of the malicious

object from the cache, then Line 23 calls gadget with the index of the malicious object.

After the gadget returns, Line 24 retrieves the contents of memory at the target address

(leaked on Line 31).

Gadget. The core of the attack occurs within gadget. Line 28 is the additional branch

we use to avoid deoptimisation. Line 30 is the vulnerable array access, specialised for

Uint8Arrays because of the training phase. During the attack phase, gadget triggers type

confusion by performing the vulnerable array access on an instance of AttackerClass.

The contents of the selected address are loaded into value which is leaked on Line 31

through a side channel. After some time, the processor detects the misprediction inside of

the array access and continues execution at Line 28 which immediately exits gadget.

5.1.4 Obtaining Deep Speculation
The previous sections describe how to bypass address space isolation and avoid deoptim-

isations, however these techniques require many instructions to be executed transiently.

To provide enough time for the processor to execute instructions beyond the type checking

branch, we delay the evaluation of the branch by evicting the header (which contains the

type identi�er) of our object from the LLC. However, we need to still use the object as

92 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

header f0 f5 f6 f7 f8 f9

Cache Line Cache Line

f1–f4

...

Figure 5.2: Cacheline Overview:
A malicious object split across cache lines. The location of the split must

occur between the f0 and f5 �elds. Ticks denote the boundaries of �elds,

rectangles within each �eld denote a byte, and colours are used to highlight

which cache line data resides in.

a Uint8Array during type confusion. Speci�cally, we need to evict our object’s header

from the cache but retain the �elds f5–f9 in the cache. We do this by placing our object

over two cache lines with the boundary between these cache lines somewhere between

the f0 and f5 �elds (Figure 5.2).

Use of Memory Compaction. In a previous section, we described how the attack

triggers Chrome’s garbage collection after allocating instances of the Uint8Array and

AttackerClass types. As a side e�ect, garbage collection compacts the heap by real-

locating these objects into a contiguous memory layout. Because the sizes of an

AttackerClass object and a cache line are not multiples of each other, compacting

the objects together changes where objects begin within the cache lines, guaranteeing the

existence of at least one object with f0 and f5 �elds that span two cache lines.

Finding Suitable Objects. Listing 5.3 presents the code used to identify a suitable

instance of AttackerClass. Line 1 generates eviction sets for the entire LLC using the

method from Vila et al. (2020). Line 4 iterates over each instance of AttackerClass and

Line 7 iterates over each eviction set. Lines 8–10 and Lines 12–14 implement the logic for

detecting whether the eviction set can successfully evict the f0 �eld while leaving the f5
�eld una�ected. Once a suitable object is found, the code returns the index of our object

and the eviction set to evict it.

Because we cannot directly access the header of any object, we use the �rst �eld (f0)

instead. Since the object is smaller than a cache line, if f0 and f5 are on separate cache

lines then f0 must be on the same cache line as the header.

5.1. Spook.js: Mounting Transient Execution Attacks in Chrome 93

1 EvictionSets = GenerateEvictionSets()
2

3 function findSuitableObject(objects) {
4 for (let index = 64; index < objects.length; index++) {
5 let candidate = objects[index]
6

7 for (set in EvictionSets) {
8 access(candidate.f0)
9 set.evict()

10 let x = isCached(candidate.f0)
11

12 access(candidate.f5)
13 set.evict()
14 let y = isCached(candidate.f5)
15

16 if (x && !y) {
17 return [index, set]
18 }
19 }
20 }}

Listing 5.3: Pseudocode for Finding Objects that Straddle Cach-
elines.

Precision Timing. To determine whether a �eld has been evicted from the cache, we

measure the time taken to access it. However, in an e�ort to reduce the threat of microar-

chitectural attacks, Chrome has reduced the resolution of its timer API (Chromium Project,

2016b). We follow the approach of Schwarz et al. (2017), and implement a counting thread

using web workers and SharedArrayBuffer.

L1 vs LLC Evictions. Google’s leaky.page transient-execution PoC (Google, 2021) uses

L1 evictions to evict �elds from the cache. While constructing L1 eviction sets is far

simpler and is more reliable than constructing LLC eviction sets, our attack requires

94 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

a greater delay after misprediction. If we evict our object’s header from the L1 cache,

without evicting it from the LLC, our attack consistently fails.

We believe this failure is due to the size of the speculation window – the number of

instructions that can be executed between misprediction and the processor squashing

the resulting incorrect execution. When f0 is evicted from the L1 cache, it will be served

from the L2 cache within approximately 10 cycles. However, if f0 is evicted from the

LLC, it will be retrieved from main memory in over 100 cycles. We believe that our attack

requires this longer retrieval time so that it can transiently execute more instructions,

requiring the need for complex LLC eviction techniques. We leave further investigation

of this e�ect to future work.

5.1.5 End-to-End Attack Performance
The previous sections have described a combination of techniques that enable an attacker

to recover the contents of arbitrary memory addresses within the process. We now

evaluate the e�ectiveness of these techniques across several generations of processors,

including CPUs made by Intel, AMD, and Apple.

Attack Setup. On Intel and Apple processors, we run Spook.js on unmodi�ed Chrome

version 89.0.4389.114. For benchmarking, we initialise a 10 KB memory region with known

random content and then use Spook.js to leak it.

Intel and Apple. Table 5.1 summarises our �ndings, averaging over 20 attack attempts.

Spook.js leaks data at a rate of 500 b/s on Intel processors ranging from the 6th to the

9th generation, with an accuracy exceeding 96%. On the Apple M1, Spook.js achieves a

leakage rate of 450 b/s with 99% accuracy.

AMD Zen. Unfortunately, we are unable to construct LLC eviction sets on AMD’s Zen

architecture. As Spook.js relies on the larger speculation window provided by LLC eviction,

we cannot run end-to-end Spook.js experiments on AMD systems. To evaluate the core

speculative type confusion attack without eviction sets, we modify V8 to expose the

clflush instruction. With this con�guration, Spook.js achieves a rate of around 500 b/s,

indicating that if an e�cient LLC eviction method is developed, Spook.js could be applied

to AMD processors too. We leave the creation of such eviction techniques to future work.

5.2. Attack Scenarios 95

Processor Architecture Eviction Method Speed Error

Apple M1 M1 Eviction Sets 451 0.99%

Intel i7 6700K Skylake Eviction Sets 533 0.32%

Intel i7 7600U Kaby Lake Eviction Sets 504 0.97%

Intel i5 8250U Kaby Lake R Eviction Sets 386 3.93%

Intel i7 8559U Co�ee Lake Eviction Sets 579 1.84%

Intel i9 9900K Co�ee Lake R Eviction Sets 488 3.76%

AMD TR 1800X Zen 1 cl�ush 591 0.02%

AMD R5 4500U Zen 2 cl�ush 590 0.06%

AMD R7 5800X Zen 3 cl�ush 604 0.08%

Table 5.1: Spook.js Performance on Various Architectures: Perform-

ance of Spook.js on various processors. Speed is in bits per second. Error is

the percentage of bits that were incorrectly recovered.

5.2 Attack Scenarios
In this section, we explore the real-world implications of Spook.js by investigating several

scenarios where the attack can extract secret or sensitive information.

Experimental Setup. All experiments in this section are conducted on a ThinkPad X1

laptop with an Intel i7-7600U CPU running Ubuntu 18.04. Unless otherwise noted, we

use an unmodi�ed Chrome version 89.0.4389. All Chrome settings remain at their default

con�gurations, including all built-in countermeasures against side-channel attacks.

5.2.1 Website Identi�cation
In our �rst scenario, we assume the attacker hosts a malicious page containing Spook.js

code on a public hosting service. The attacker then convinces the victim to open an

unrelated page from the same hosting service, for example, the victim’s personal page.

While most pages on the hosting service are publicly accessible, the information about

which pages the victim currently has open is private and should remain inaccessible to

the attacker.

96 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

Attack Setup. To demonstrate how Spook.js compromises the victim’s privacy, we

conduct the attack on bitbucket.io, a Git-based hosting service. We host a malicious

webpage containing the Spook.js code on bitbucket.io and create three sample personal

pages, as shown in Figure 5.3 (top). Following Bitbucket’s naming convention, the URLs

of all four pages follow the pattern username.bitbucket.io , making them eligible for

consolidation. The ground truth usernames for our three sample personal pages are:

spectrevictim, lessknownattacker, and knownattacker.

Experimental Results. After opening the four websites in separate tabs, we consolidate

all Bitbucket pages into a single renderer process then use Spook.js to leak the memory

space of that renderer process. By analysing the results, we successfully recover a list

of URLs corresponding to the tabs currently being rendered (Figure 5.4). Although the

content of our sample victim pages is publicly accessible, the list of bitbucket.io websites

simultaneously viewed by the user is private and should not be exposed to a malicious

page hosted on bitbucket.io.

5.2.2 Recovering Sensitive Information
In the second scenario, we examine a protected subdomain that displays private data to

authenticated users. As an example, we leverage the structure of our university’s website,

which, at the time of writing, hosts its main page, single sign-on (SSO) page, and internal

portal pages under the same site as personal webpages.

Attack Setup. In collaboration with our University’s IT department, we host the Spook.js

code on a personal webpage. While logged in with the author’s account, we open three

pages from the human resources subdomain in separate tabs. Each page displays the

author’s contact details and direct deposit information (Figures 5.5 and 5.6 top). To protect

the author’s privacy, we edit the local copy of the DOM before executing the attack.

Experimental Results. After opening the three tabs, we also open the page hosting

the Spook.js attack. Chrome consolidates all four pages into the same renderer process,

allowing the attack page to recover sensitive data displayed on the other three pages

(Figures 5.5 and 5.6 bottom).

bitbucket.io
bitbucket.io
username.bitbucket.io
bitbucket.io

5.2. Attack Scenarios 97

5.2.3 Attacking Credential Managers
The previous chapter demonstrated how to use Spook.js to steal sensitive information

embedded within pages hosted on the same site as an attacker controlled page. This section

demonstrates the security implications of Spook.js on popular credential managers, which

automatically �ll in login credentials associated with a website, often without any user

interaction. Furthermore, we show that credentials can be recovered even if the user does

not submit them by pressing the login (or any other) button, as simply populating the

credential �elds places this sensitive data into the renderer process’s address space.

Attacking Chrome. We use the experimental setup described for the university ex-

periments, where both the login page and the internal attacker page are hosted by the

university and rendered within the same process. We assume that the credentials are

already saved in Chrome’s password manager. Figure 5.7 illustrates the results of the

experiment in which Chrome’s password manager auto-�lls the credentials (top), and we

successfully recover these credentials without requiring any user interaction (bottom).

Attacking LastPass. We achieve similar results when using the same experimental setup

but with LastPass version 4.69.0 to auto�ll passwords instead of Chrome’s built-in manager.

In addition to leaking credentials, we also extract other account usernames associated

with the website. Figure 5.8 illustrates the results of this experiment in which LastPass

enables the user to select which account to login as (top), and we successfully recover the

list of account names (bottom).

One-Click Credential Recovery. We take the previous attack a step further by showing

that credentials can sometimes be recovered as soon as the victim opens our malicious

webpage without the need for additional tabs. This capability is enabled by two key

observations: First, that the login page can be embedded within an iframe. Second, that

LastPass �lls user credentials automatically, without any visibility or interaction with the

user. Figure 5.9 illustrates the results of the experiment in which we embed the login page

within an invisible iframe (top) and successfully extract the credentials without the need

for the victim to voluntarily or knowingly visit the login page (bottom).

Extracting Credit Cards. In addition to passwords, credential managers also manage

credit card information, automatically �lling the information when authorised by the user.

Figure 5.10 illustrates the results of an experiment in which we successfully recover the

98 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

victim’s card details (top) after they are populated on a payment page (bottom). We achieve

similar results with both LastPass and Chrome’s built-in credit card auto�ll features.

5.2.4 Attacking Tumblr
The previous section demonstrated how to use Spook.js to steal credentials that were

automatically �lled in by a credential manager. This section demonstrates the same

technique on Tumblr, a popular micro-blogging platform with 327 million unique visitors

as of January 2021 (statista, 2021).

Attack Setup. The Tumblr platform hosts user blogs under the domain username.tumblr.
com, while the login page and account settings are hosted under tumblr.com. This ar-

chitecture relies on enforcement of the same-origin policy to prevent cross-site attacks.

Unfortunately, because these pages all share the same site, Chrome will allow them to be

consolidated into the same process.

Although users cannot freely add JavaScript to blog posts, or otherwise inject it into

the tumblr.com domain, they can customise their own blog’s theme using HTML. More

speci�cally, Tumblr’s Cross-Origin Resource Sharing (CORS) policy prevents importing

scripts from di�erent origins, and its Content Security Policy (CSP) disallows creating

Blob objects. Despite these restrictions, Tumblr’s CSP permits the use of data URLs and

the eval function, enabling us to embed the attack code as inline JavaScript within a URL.

For this attack we use Chrome version 90.0.4430.

Attack Results. Using a similar setup to the previous section, we create a malicious blog

on Tumblr’s platform containing the Spook.js attack code. We achieve consolidation in

two ways: �rst, through memory pressure as described previously, and second, via user

interaction which we use to open a window and load pages into.

Figure 5.11 illustrates the results of this experiment in which the victim’s credentials

are automatically �lled into the page (top) and we successfully recover them (bottom).

In addition, Figure 5.12 illustrates the results of a second experiment in which we open

a webpage listing which blogs are owned by the victim (top) and successfully recover

this list of blogs (bottom) – this list of blogs is ordinarily only accessible to the user. We

achieve similar results with either consolidation method.

username.tumblr.com
username.tumblr.com
tumblr.com
tumblr.com

5.2. Attack Scenarios 99

5.2.5 Exploiting Unintended Content Uploads
Until now, our attacks have assumed that the attacker’s webpage resides directly on the

domain where the target content was originally uploaded. We now relax this assumption,

demonstrating that content uploaded to one domain is sometimes silently transferred to

another. This behaviour enables Spook.js to recover the content even when served from a

di�erent domain.

Google Sites. As an illustrative case, we examine Google Sites, which allows users to

create personal webpages and embed HTML containing JavaScript under sites.google.com.

Google Sites then executes this user-supplied code within a sandboxed iframe, served

from googleusercontent.com. As we cannot gain a presence on the google.com directly we

cannot directly target other google.com pages.

However, we observe that Google hosts more than just personal webpages on the

content domain. Speci�cally, Google appears to use the content domain as a general-

purpose storage location for user content, automatically uploading email attachments,

images, and thumbnails for Google Drive documents.

Google Photos. Focusing on Google Photos, we discover that all images uploaded or

automatically synchronised to the service are hosted on the content domain. When

users view images through photos.google.com, the page loads the images from the content

domain using img tags. When displayed in this manner, these images are not consolidated

with pages from the content domain.

Nevertheless, consolidation can occur if the user chooses alternative methods of

viewing the image. For example, if the user opens the image in a new tab, the image loads

directly from the content domain. Similarly, accessing the image through a shared link,

or a QR code also renders the image directly from the content domain. In all cases, the

image will be eligible for consolidation with other pages.

Attack Setup and Results. We create a page on sites.google.com that serves Spook.js,

which we open in one tab. In a second tab, we open an image uploaded to the victim’s

private Google Workspace. We then trigger consolidation through memory pressure and

recover the image (Figure 5.13).

sites.google.com
googleusercontent.com
google.com
google.com
photos.google.com
sites.google.com

100 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

5.3 Exploiting Malicious Extensions
Moving beyond the security implications of website consolidation, this section explores

the security risks associated with the consolidation of Chrome extensions. At a high level,

Chrome allows users to install JavaScript-based extensions that modify the browser’s

default behaviour, such as by blocking ads, applying themes to websites, and managing

passwords.

Extension Permissions. To support this functionality, Chrome employs a permissions

model that grants extensions capabilities beyond those available to regular JavaScript

code executed by websites. To protect these privileged capabilities from both websites

and less-privileged extensions, it is essential that Chrome correctly isolates extensions

from each other and from web content.

The LastPass Extension. To demonstrate the security implications of Chrome extension

consolidation, we examine the LastPass Chrome extension. When a user logs into the

LastPass extension, it retrieves an encrypted vault of passwords from LastPass’s cloud

service and decrypts it using a key derived from the user’s master password (LastPass).

Our empirical analysis shows that while passwords are decrypted only when needed for

auto�ll, LastPass retains all associated usernames in plaintext in memory.

Attack Setup and Results. We conduct the experiment using Chrome with the LastPass

version 4.69.0 extension and sign into our LastPass account. We also port Spook.js into

a malicious Chrome extension that requests no permissions and install it on the same

system. Then, we consolidate the two extensions into the same process using memory

pressure. Finally, we use LastPass to log in to any website, which triggers LastPass to

decrypt and populate the website’s credentials. Since Spook.js runs in the same process as

the LastPass extension, we can access all of its memory, including decrypted credentials

(Figure 5.14 top) and the victim’s master password (Figure 5.14 bottom).

5.4 Attacking Additional Browsers
We investigate Spook.js on Microsoft Edge and Brave. Edge is the default browser on

Windows 10, holding about 5% of the desktop market share (Kinsta), while Brave is a

popular privacy-focused browser designed to block ads and trackers (Brave). As both

5.5. Countermeasures 101

browsers are built on Chromium, they inherit its site isolation implementation, policies,

and associated limitations.

We experimentally con�rm that the consolidation techniques are e�ective in both

browsers. Table 5.2 shows that Spook.js achieves leakage rates on Microsoft Edge and

Brave comparable to those obtained on Chrome.

Processor Browser Leakage Rate Error Rate

Intel i7 6700k Brave v89.1.22.71 504 B/s 1.25%

(Skylake) Edge v89.0.774.76 381 B/s 4.88%

Table 5.2: Spook.js Performance on Brave and Edge.

Finally, we test the experimental implementation of site isolation on Firefox (Mozilla

Foundation, 2022) using Firefox Nightly version 89.0a1 (build date: 12 April 2021). Similar

to Chrome, Firefox Nightly 89.0a1 exhibits consolidation via tab pressure and window.open.

However, owing to signi�cant di�erences in the JavaScript engine, we leave a Firefox port

of Spook.js to future work.

5.5 Countermeasures

Separating User JavaScript. Spook.js depends on consolidating two endpoints of the

same website into a single process – one executing attacker-controlled JavaScript and the

other containing sensitive data. Website operators can protect users from Spook.js by

serving these endpoints from di�erent domains. Although this approach is commonly used

to separate user content from operator content, it falls short when user-provided JavaScript

is served from the same domain as other sensitive user data. We propose extending this

strategy by serving user-provided JavaScript from one domain while hosting all other user-

provided content on a separate domain. This countermeasure can be readily implemented

by website operators to protect users from JavaScript-based attacks such as Spook.js.

Origin Isolation. Browser vendors could align the de�nition of security domains used

in site isolation with those used by the rest of the web. A straightforward approach is

to consider the entire domain name for site isolation rather than relying on the eTLD+1.

102 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

However, this origin-based isolation may break a signi�cant number of websites, as 13.4%

of page loads modify their origin via document.domain (Reis et al., 2019).

The Public Su�x List (PSL). Maintained by Mozilla, the PSL (Mozilla Foundation, 2020)

is a list of E�ective Top Level Domain Names, domain names under which users can

directly register subdomains. Examples of entries include github.io and, thanks to this

work, bitbucket.io (Atlassian, 2021). We recommend web services that allow users to

register subdomains to add their domains to the PSL to mitigate the risk of related-domain

attacks such as Spook.js. In particular, our attacks on bitbucket.io and tumblr.com were

only possible because both domains were absent from the PSL. Notably, Tumblr’s absence

from the PSL was previously reported by Squarcina et al. (2021).

Strict Extension Isolation. As a result of our �ndings, Google deployed strict exten-

sion isolation (Chromium Project, 2021a). This feature prevents consolidation between

extensions and has been enabled in Chrome 92 and later.

Speculation Hardening. At a high level, Spook.js is a type of confusion attack that

exploits transient execution beyond an object’s type check. A simple, though incomplete,

countermeasure is to prevent such transient execution by inserting an lfence instruction

immediately after all type checks.

A similar technique is pointer poisoning (Pizlo, 2018), which masks each data pointer

with a random constant unique to the object’s type. This technique does not prevent mis-

prediction of the type check, but will poison the resulting pointer and prevent exploitable

transient execution.

5.6 Limitations

Targets. To execute Spook.js, the attacker must upload JavaScript onto the target website’s

domain. These attacks are known as related-domain attacks (Squarcina et al., 2021; Bortz

et al., 2011). Although the chapter has illustrated numerous attack scenarios in which

Spook.js can be applied, it cannot be applied across unrelated domains.

Architectures. Due to the non-inclusive cache architecture of AMD Zen processors, our

LLC eviction strategy fails on AMD systems. We leave the task of demonstrating Spook.js

on non-inclusive caches, such as AMD Zen microarchitectures, to future work.

github.io
bitbucket.io
bitbucket.io
tumblr.com

5.7. Conclusion 103

Firefox. Similarly to Chrome, Firefox’s site isolation implementation also consolidates

websites based on the same-site policy. Although we successfully demonstrated consolid-

ation on Firefox, its JavaScript engine di�ers signi�cantly from Chrome’s. We leave the

task of demonstrating Spook.js on �refox to future work.

5.7 Conclusion
In this chapter, we present Spook.js, a novel transient-execution attack capable of recov-

ering sensitive information from other websites despite Chrome’s site isolation counter-

measures. Similar to other related-domain attacks (Bortz et al., 2011; Squarcina et al.,

2021), Spook.js exploits the gap between the policy used by the countermeasure (the

same-site policy) and the policy used by the broader web ecosystem (the same-origin

policy). We demonstrate several realistic attack scenarios in which we extract sensitive

data, including usernames and passwords, from multiple popular web services, browser

extensions, and the browser itself. Furthermore, we show that Spook.js can be executed

on Chromium-based browsers, such as Brave and Edge, and that Firefox su�ers from the

same core vulnerability as Chrome.

In response to our work, Google has deployed strict extension isolation, and several

popular web services have added themselves to the PSL. While these countermeasures are

not as comprehensive as origin isolation or speculation hardening, they were deployed

rapidly and with zero impact on compatibility while mitigating the threat posed by

Spook.js. Moreover, Google introduced support for con�guring how Chromium isolates

websites, including an option to enable origin isolation (Chromium Project, 2021b,a).

The next chapter departs from the focus on web browsers while continuing the broader

theme of evaluating countermeasures by mounting attacks.

104 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

Figure 5.3: Results – Bitbucket – Contents:
(Top) Example of a victim webpage. (Bottom) Leakage of parts of the victim

webpage’s text. Bitbucket has since mitigated Spook.js.

5.7. Conclusion 105

Figure 5.4: Results – Bitbucket – Open Subdomains:
Leakage of currently open bitbucket.io subdomains. Parts corresponding to

the URLs have been highlighted. Bitbucket has since mitigated Spook.js.

bitbucket.io

106 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

Figure 5.5: Results – University – Contact Information: (Top) Con-

tact information page displayed of the university website, edited to show

anonymized information. (Bottom) Leakage of contact information using

Spook.js.

5.7. Conclusion 107

Figure 5.6: Results – University – Bank Details:
(Top) The direct deposit settings page of the university website, edited to

show anonymized information. (Bottom) Leakage of bank account and

routing number.

108 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

Figure 5.7: Results – Chrome Password Manager – Passwords:
(Top) Credential auto�ll by Chrome’s password manager into the univer-

sity’s login page. (Bottom) Leaked credentials using Spook.js.

5.7. Conclusion 109

Figure 5.8: Results – LastPass – Passwords:
(Top) Multiple accounts managed by LastPass. (Bottom) Using Spook.js to

leak the list of associated accounts.

110 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

Figure 5.9: Results – Hidden Frame:
Extracted credentials from a hidden frame embedded in the page.

Figure 5.10: Results – LastPass – Credit Cards:
(Top) Credit card information populated by LastPass. (Bottom) Using

Spook.js to leak credit card information.

5.7. Conclusion 111

Figure 5.11: Results – Tumblr – Password:
(Top) Tumblr’s login page with credentials auto�lled by LastPass. (Bottom)

Recovered username and password.

112 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

Figure 5.12: Results – Tumblr – Open Subdomains:
(Top) The list of all blogs owned by an account, which is visible only to

the owner of the account. (Bottom) Recovered list with blog names in

highlights.

5.7. Conclusion 113

Figure 5.13: Results – Google Photos:
(Left) An image of an antelope uploaded to Google Photos. (Right) A recon-

structed image from the leaked data.

Figure 5.14: Results – Lastpass – Master Password:
(Top) Recovered login credential of wikipedia.org populated by Last-

Pass. (Bottom) Recovered master password of LastPass’ vault (originally

LastPassPassword1#).

115

Chapter 6

Security Type Systems and Transient
Execution

As demonstrated in previous chapters, the subtle behaviours of modern processors can be

exploited to compromise software security. Fortunately, various techniques have been

proposed to mitigate such threats. One prominent approach involves modifying programs

to ensure identical microarchitectural behaviour regardless of input. Known as constant-

time programming, this method makes microarchitectural observations uninformative to

potential adversaries by ensuring these observations remain consistent across all program

inputs.

Unfortunately, developing constant-time software presents signi�cant challenges (Jan-

car et al., 2022). To help overcome these di�culties, several tools have been created

to assist in developing constant-time software. These tools can verify whether a pro-

gram is constant-time and often automatically transform portions of the program into

constant-time variants.

The FaCT compiler (Cauligi et al., 2019) is an example of such a tool. It employs a

constrained information-�ow security type system that ensures secret-typed variables are

never used in ways that a�ect the program’s observable behaviour. While these systems

are e�ective, they can be overly restrictive. For example, they prohibit operations such

as network transmission or �le storage, even when these operations are safe to perform.

Moreover, because the results of operations involving secret variables must be assigned

to secret variables, this restriction can rapidly propagate throughout the program.

The standard solution to this problem is to introduce a declassify operation. This

operation serves as an annotation inserted by the developer to assert that a value stored

116 Chapter 6. Security Type Systems and Transient Execution

in a secret variable can be safely stored in a public variable, enabling its use in otherwise

forbidden operations. While it can shown that introducing declassify operations is safe

under sequential execution, their safety under out-of-order execution remains less clear.

1 uint8_t otp_and_decode(
2 secret uint8_t m,
3 secret uint8_t k
4) {
5 secret uint8_t c = m;
6 for (uint8_t i = 0; i < 8; i++) {
7 c ^= k & (1 << i);
8 }
9

10 public uint8_t d = declassify(c);
11 return decode[d];
12 }

Listing 6.1: One-Time Pad Example:
One-time pad into table-based decoder. Skipping the for loop (due to mis-

speculation) directly leaks the secret m.

Consider the program in Listing 6.1. In this example, a secret message m is encrypted

using a bitwise one-time pad, and the resulting ciphertext c is passed into a table-based

decoder. Because the ciphertext depends on the secret, c is classi�ed as secret and must

be declassi�ed before it can be decoded. With the assumption that the one-time pad is

uniformly distributed, the program does not leak m under normal execution.

However, if the loop were not executed at all, then the program would trivially leak m
via c. While such behaviour is impossible under the sequential execution model, since the

loop must be executed before the declassify operation can be executed, on real hardware

an adversary with control over branch prediction could trick the processor into skipping

the loop body entirely.

The remainder of this chapter explores the interaction between declassify operations

and out-of-order execution, culminating in a PoC attack targeting several implementations

6.1. AES Background 117

of the AES encryption algorithm. Unlike prior approaches which focus on enabling ad-

versaries to leak data from unintended locations, such as out-of-bounds memory accesses

or type-confused structures, this attack leaks values from the intended location but at an

unintended time.

The rest of this chapter provides further background for AES, describes how the PoC

attack extracts partial ciphertexts from AES, then ends with a demonstration of the attack

on the OpenSSL implementation of AES.

6.1 AES Background
The Advanced Encryption Standard (AES) is a symmetric block cipher that operates on

128-bit blocks and supports key sizes of 128, 192, or 256 bits. AES employs a substitution-

permutation network structure, executing multiple rounds of transformations on the

plaintext (input) to produce the �nal encrypted ciphertext (output). The number of rounds

depends on the key size, with 10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and

14 rounds for 256-bit keys.

AES Round Overview. The 128-bit AES state is represented as a 4ˆ 4 byte matrix and is

transformed in each round through four operations: SubBytes, ShiftRows, MixColumns,

and AddRoundKey. In the �nal round the MixColumns operation is omitted.

The SubBytes operation replaces each byte in the state by another byte using a

prede�ned substitution table (S-box). ShiftRows circularly rotates the bytes in row i to left

by i positions. MixColumns applies a linear transformation to each column, interpreting

the bytes as elements of GFp28q. Finally, AddRoundKey performs bitwise exclusive OR

(XOR) between the state and a round-speci�c key derived from the original key.

AES-NI. The Advanced Encryption Standard New Instructions (AES-NI) is an extension

of the x86-64 instruction set that implements the core operations of AES encryption

in hardware. It provides improved performance and enhanced security compared with

software-based implementations. For AES encryption, AES-NI includes two primary

instructions: AESENC, which performs a full AES round, and AESENCLAST, which performs

the �nal round.

118 Chapter 6. Security Type Systems and Transient Execution

6.2 PoC Attack
The core idea behind the attack is to trick the processor into applying an incorrect number

of AES rounds to the plaintext. We do this by training the branch predictor to mispredict

branches that control the number of rounds. Listing 6.2 shows a vulnerable implementation

of AES. key holds all of the round-speci�c keys along with the number of rounds to apply

to the plaintext. The goal of the attack is to control the branches on Lines 18 and 21 to

control the number of rounds applied, then leak and analyse the resulting improperly

encrypted ciphertext to recover the key.

Step 1: Branch Predictor Training. Listing 6.3 presents the pseudocode for the attack.

Lines 2 and 3 create two AES keys, one is used for training and the other represents a

‘secret’ key that is a stand-in for a key that the attacker does not have access to. Lines 5–7

repeatedly calls encrypt using the training key. Because the training key is a 128-bit key,

encrypt will apply 10 rounds to the plaintext.

In practice, attackers may employ alternative techniques to train the processor, such

as exploiting aliasing within the branch prediction unit. For the purposes of this PoC, we

use the simple technique of reusing the encryption algorithm for training.

Step 2: TriggeringMisspeculation. After training the processor, Line 9 �ushes secret_
key.rounds from the cache. This �eld controls the number of rounds to apply to the

plaintext. Flushing it from the cache delays evaluation of branch conditions within

encrypt until the �eld is returned from memory. Then Line 10 calls encrypt with the

secret key.

As the secret key is a 192-bit key, encrypt should apply 12 rounds to the plaintext.

However, because of the previous training step, the processor incorrectly applies 10 rounds

to the plaintext. The branch that controls the number of rounds (Listing 6.2 Line 18) is

predicted as not taken, when it should be taken.

Moreover, because key.rounds has been �ushed from the cache, the speculation

window is large enough for control �ow to leave encrypt and return back into the attack

where Line 12 can leak the resulting reduced-round ciphertext via a side channel.

Step 3: Recovering the Reduced-Round Ciphertext. Eventually, the processor will

detect the misprediction and squash the resulting incorrect execution. It restarts execution

6.2. PoC Attack 119

back at the branch that controls the number of rounds (Listing 6.2 Line 18) and applies

the correct number of rounds then returns back into the attack.

Line 12 is executed again, leaking the resulting correctly encrypted ciphertext. This is

simply an artefact of explanation, this is not a necessary step of the attack. In a real attack,

the attacker could construct an attack which only leaks the reduced-round ciphertext.

Finally, Line 14 recovers the leaked reduced-round ciphertext using a side channel. We

use the Flush+Reload technique (Yarom and Falkner, 2014) as the side-channel technique

for simplicity. Several other side channels have been demonstrated in the context of

transient-execution attacks (Bhattacharyya et al., 2019; Google, 2021; Amos et al., 2019;

Ren et al., 2021), so the choice of channel is not limited to Flush+Reload.

AttackAccuracy. We test two implementations, both written in FaCT: one compiled with

the default LLVM back-end and the other with LLVM con�gured to enable Speculative

Load Hardening (SLH). We repeat the attack 1,000 times against each victim, recording

whether the reduced-round ciphertext is correctly recovered each time. On average, the

attack succeeds with a probability exceeding 95%, regardless of the victim.

OpenSSL Implementations. We further demonstrate leakage from two AES implement-

ations provided by OpenSSL.

The �rst implementation uses T-tables to perform the round function and follows

the same general structure as Listing 6.2 but employs precomputed tables for the round

transformations. Although T-table implementations are known to be vulnerable to cache

attacks (Osvik et al., 2006), our PoC does not exploit this particular vulnerability; instead,

it uses the same strategy described earlier. The PoC succeeds as expected when SLH is

disabled, but enabling SLH prevents the leak by poisoning the table accesses executed in

the �nal round.

The second implementation uses AES-NI instructions and is written in x86-64 assembly.

The implementation uses AESENC within a loop and invokes AESENCLAST for the �nal

round. The number of iterations of the loop is determined by key.rounds. Because the

loop can terminate after any number of iterations, we train the loop to terminate after a

single iterations, resulting in a two-round encryption (the last round is unconditionally

applied after the loop). The PoC succeeds when SLH is disabled. Since LLVM cannot

apply SLH to assembly code, we do not test this implementation with SLH enabled.

120 Chapter 6. Security Type Systems and Transient Execution

6.3 Conclusion
This chapter demonstrated a proof-of-concept attack on declassi�cation. Speci�cally, the

gap between the sequential execution model used by tooling and the out-of-order execu-

tion model used by hardware enables adversaries to leak sensitive data from otherwise

protected code.

Fortunately, several factors limit the practicality of these attacks. While intra-process

isolation remains an active research area (Vahldiek-Oberwagner et al., 2019; Kirth et al.,

2022; Voulimeneas et al., 2022), some high-pro�le applications appear to be moving in the

opposite direction (Reis et al., 2019). Moreover, it is unclear whether such an attack could

be performed across process boundaries.

The accompanying paper (Shivakumar et al., 2023) provides the remaining context,

full theoretical analysis, methods to recover the key, and proposed countermeasures to

mitigate this issue. This chapter contains only the work that I contributed to the paper.

6.3. Conclusion 121

1 function encrypt(
2 AES_STATE plaintext,
3 AES_STATE ciphertext,
4 AES_KEY key
5) {
6 AES_STATE* key = key.round_keys
7

8 AES_STATE state = xor(plaintext, *key++)
9 state = AESENC(state, *key++)

10 state = AESENC(state, *key++)
11 state = AESENC(state, *key++)
12 state = AESENC(state, *key++)
13 state = AESENC(state, *key++)
14 state = AESENC(state, *key++)
15 state = AESENC(state, *key++)
16 state = AESENC(state, *key++)
17 state = AESENC(state, *key++)
18 if (key.rounds > 10) {
19 state = AESENC(state, *key++)
20 state = AESENC(state, *key++)
21 if (key.rounds > 12) {
22 state = AESENC(state, *key++)
23 state = AESENC(state, *key++)
24 }
25 }
26 return AESENCLAST(state, *key++)
27 }

Listing 6.2: Protected AES Implementation:
Implementation of unrolled AES encryption. The aes_round and

aes_final_round functions are compiler intrinsics that map to the AESENC
and AESENCLAST x86 instructions respectively.

122 Chapter 6. Security Type Systems and Transient Execution

1 function attack() {
2 training_key = create_aes128_key();
3 secret_key = create_aes192_key();
4

5 for (int i = 0; i < 127; i++) {
6 encrypt(plaintext, training_key);
7 }
8

9 flush(secret_key.rounds);
10 ciphertext = encrypt(plaintext, secret_key);
11

12 sidechannel_send(ciphertext);
13

14 return sidechannel_recv();
15 }

Listing 6.3: Pseudocode for AES Attack:
Pseudocode of our attack on AES. For clarity, we show training and victim

execution as separate steps. In practice, our code does both of these steps

in the same loop, using constant-time select to switch between inputs.

123

Chapter 7

Conclusion

This thesis examines the e�ectiveness of deployed microarchitectural side-channel coun-

termeasures.

Chapter 3 investigates the root causes of leakage in coarse-grained website �nger-

printing attacks. Chapter 4 introduces Pixel Thief– a practical cache-based pixel-stealing

attack that recovers pixels faster than any previous timing-based approach. Chapter 5

presents Spook.js– a practical transient execution attack capable of leaking secrets despite

the presence of countermeasures. Finally, Chapter 6 describes a PoC demonstrating how

transient execution can subtly undermine security type systems.

These attacks demonstrate that at the time of writing, current countermeasures are

insu�cient to fully protect users from microarchitectural threats. However, this does not

imply that the countermeasures have been ine�ective. On the contrary, the countermeas-

ures deployed by browser vendors have signi�cantly limited the precision and impact of

the attacks presented in this thesis, making them less potent than they might otherwise

have been.

For example, Pixel Thief bypasses cross-origin isolation but only by shifting to an

adversarial model that requires victim interaction. Similarly, Spook.js circumvents mitiga-

tions for transient-execution attacks but only under a related-domain adversarial model.

These shifts in the adversarial model are a direct consequence of previously deployed

countermeasures and re�ect a weakening of the adversary’s capabilities to mount e�ective

attacks – a trend that appears to continue with the countermeasures deployed to mitigate

Pixel Thief and Spook.js.

In response to Spook.js, Google deployed several targeted mitigations into their

124 Chapter 7. Conclusion

Chrome browser. The browser now correctly isolates extensions into their own pro-

cesses and provides con�gurable options for controlling how websites are isolated across

processes. However, Chrome still defaults to isolating at the site level, so we recommend,

as an interim measure, that operators of vulnerable websites add their domains to the

PSL. The PSL changes how the same-site policy is applied, so that subdomains are treated

as entirely separate websites. Browser countermeasures that use the same-site policy,

including site isolation, will be applied to these subdomains as the operators intended.

Recently deployed cookie isolation features such as Total Cookie Protection and

Intelligent Tracking Prevention also a�ect Pixel Thief and Spook.js. These features aim to

prevent user tracking by isolating cookies based on whether a website is loaded normally

or embedded within an iframe on a third-party site. A side e�ect of these features is that

iframe-based attacks are served fresh instances of websites without any cookies. Without

any cookies, the iframe will likely not contain any of the victim’s sensitive information,

defeating iframe-based attacks.

Despite this ongoing progress, the state of countermeasures remains far from ideal.

Firstly, Browser vendors must balance security with other competing concerns, including

compatibility and performance, and may not be able to implement strong countermeasures.

For instance, browsers still allow cross-origin application of �lters, despite their security

risk, because existing websites rely on this capability. Similarly, browsers have begun to

adopt website isolation, but continue to use the same-site policy instead of the same-origin

policy for compatibility and performance reasons.

Moreover, the implementations of these countermeasures may themselves be �awed.

For example, Kim et al. (2023) uncovered a �aw in Safari that allowed an adversary to

consolidate arbitrary websites into the same process undermining its isolation counter-

measures entirely. Apple has since patched this vulnerability; however it raises questions

about whether similar vulnerabilities could exist.

Finally, countermeasures are incomplete. Consider the coarse-grained website-

�ngerprinting attacks described in Chapter 3. It is simply unclear how a viable counter-

measure could ever mitigate such attacks.

Despite these limitations in countermeasures, there is room for optimism in this space.

The existing countermeasures were very e�ective at limiting the capabilities of Pixel Thief

and Spook.js, and the newly deployed countermeasures only further limit their capability.

Importantly, these countermeasures have been deployed and are now in active use.

Chapter 7. Conclusion 125

I urge the reader not to be discouraged by these limitations, but to take them as a call

to action to improve the security of the web. Finally, I would like to end the thesis by

thanking you, the reader, for your time.

– Cheers, Sioli

127

Bibliography

Onur Acıiçmez and Jean-Pierre Seifert. Cheap hardware parallelism implies cheap security.

In FDTC, pages 80–91, 2007. doi: 10.1109/fdtc.2007.16.

Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting secret keys via branch

prediction. In CT-RSA, pages 225–242, 2006. doi: 10.1007/11967668_15.

Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert. New branch prediction vulnerabil-

ities in OpenSSL and necessary software countermeasures. In IMACC, pages 185–203,

2007. doi: 10.1007/978-3-540-77272-9_12.

Alejandro Cabrera Aldaya and Billy Bob Brumley. HyperDegrade: From GHz to MHz

e�ective CPU frequencies. In USENIX Security, pages 2801–2818, 2022.

Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida García,

and Nicola Tuveri. Port contention for fun and pro�t. In IEEE SP, pages 870–887, 2019.

doi: 10.1109/sp.2019.00066.

Thomas Allan, Billy Bob Brumley, Katrina E. Falkner, Joop van de Pol, and Yuval Yarom.

Amplifying side channels through performance degradation. In ACSAC, pages 422–435,

2016. doi: 10.1145/2991079.2991084.

Ben Amos, Niv Gilboa, and Arbel Levy. Spectre without shared memory. In SAC, pages

1944–1951, 2019. doi: 10.1145/3297280.3297470.

Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner, and

Hovav Shacham. On subnormal �oating point and abnormal timing. In IEEE SP, pages

623–639, 2015. doi: 10.1145/3243734.3243766.

128 BIBLIOGRAPHY

Marc Andrysco, Andres Nötzli, Fraser Brown, Ranjit Jhala, and Deian Stefan. Towards

veri�ed, constant-time �oating point operations. In CCS, pages 1369–1382, 2018. doi:

10.1145/3243734.3243766.

Atlassian. Spook.js: speculative execution resulting in cross-domain browser inform-

ation leakage, 2021. URL https:// community.atlassian.com/t5/Trust-Security-Articles/
Spook-js-speculative-execution-resulting-in-cross-domain-browser/ba-p/1799650.

Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Carlos Daniel Luna, and David Pichar-

die. System-level non-interference for constant-time cryptography. In CCS, pages

1267–1279, 2014. doi: 10.1145/2660267.2660283.

Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessandro Sorni-

otti, Babak Falsa�, Mathias Payer, and Anil Kurmus. SMoTherSpectre: Exploiting

speculative execution through port contention. In CCS, pages 785–800, 2019. doi:

doi/10.1145/3319535.3363194.

Andrew Bortz, Adam Barth, and Alexei Czeskis. Origin cookies: Session integrity for web

applications. W2SP, 2011.

Brave. The brave browser. URL https://brave.com/ .

Ernie Brickell, Gary Graunke, Michael Neve, and Jean-Pierre Seifert. Software mitigations

to hedge AES against cache-based software side channel vulnerabilities, 2006.

William J. Buchanan, Scott Helme, and Alan Woodward. Analysis of the adoption of

security headers in HTTP. In IET Information Security, pages 118–126, 2018. doi:

10.1049/iet-ifs.2016.0621.

Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touching from a distance:

Website �ngerprinting attacks and defenses. In CCS, pages 605–616, 2012. doi: 10.1145/

2382196.2382260.

Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina Minkin,

Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, Jo van Bulck, and Yuval

Yarom. Fallout: Leaking data on Meltdown-resistant CPUs. In CCS, pages 769–784,

2019. doi: 10.1145/3319535.3363219.

https://community.atlassian.com/t5/Trust-Security-Articles/Spook-js-speculative-execution-resulting-in-cross-domain-browser/ba-p/1799650
https://community.atlassian.com/t5/Trust-Security-Articles/Spook-js-speculative-execution-resulting-in-cross-domain-browser/ba-p/1799650
https://brave.com/

BIBLIOGRAPHY 129

Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S. Wahby, John

Renner, Benjamin Grégoire, Gilles Barthe, Ranjit Jhala, and Deian Stefan. FaCT: A DSL

for timing-sensitive computation. In PLDI, pages 174–189, 2019. doi: 10.1145/3314221.

3314605.

Craig Chambers, David Ungar, and Elgin Lee. An e�cient implementation of SELF a

dynamically-typed object-oriented language based on prototypes. ACM SIGPLAN
Notices, pages 49–70, 1989. doi: 10.1145/74877.74884.

Chromium Project. SVG �lter timing attack, 2013. URL https://bugs.chromium.org/p/
chromium/ issues/detail?id=251711.

Chromium Project. Timing attack on denormalized �oating point arithmetic in SVG �lters

circumvents same-origin policy, 2016a. URL https://bugs.chromium.org/p/chromium/
issues/detail?id=615851.

Chromium Project. window.performance.now does not support sub-millisecond precision

on Windows, 2016b. URL https://bugs.chromium.org/p/chromium/issues/detail?id=
158234#c110.

Chromium Project. Cross-origin pixel reading and history sni�ng via SVG �lter timing

attack, 2017. URL https://bugs.chromium.org/p/chromium/ issues/detail?id=686253.

Chromium Project. Protecting more with site isolation, 2021a. URL https:// security.
googleblog.com/2021/07/protecting-more-with-site-isolation.html.

Chromium Project. Site isolation, 2021b. URL https://www.chromium.org/Home/
chromium-security/ site-isolation/ .

Chromium Project. Software rendering list, 2023. URL https:// chromium.googlesource.
com/chromium/src/gpu/+/ refs/heads/main/con�g/software_rendering_list.json.

Jack Cook, Jules Drean, Jonathan Behrens, and Mengjia Yan. There’s always a bigger �sh:

A clarifying analysis of a machine-learning-assisted side-channel attack. In ISCA, pages

204–217, 2022. doi: 10.1145/3470496.3527416.

https://bugs.chromium.org/p/chromium/issues/detail?id=251711
https://bugs.chromium.org/p/chromium/issues/detail?id=251711
https://bugs.chromium.org/p/chromium/issues/detail?id=615851
https://bugs.chromium.org/p/chromium/issues/detail?id=615851
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://bugs.chromium.org/p/chromium/issues/detail?id=686253
https://security.googleblog.com/2021/07/protecting-more-with-site-isolation.html
https://security.googleblog.com/2021/07/protecting-more-with-site-isolation.html
https://www.chromium.org/Home/chromium-security/site-isolation/
https://www.chromium.org/Home/chromium-security/site-isolation/
https://chromium.googlesource.com/chromium/src/gpu/+/refs/heads/main/config/software_rendering_list.json
https://chromium.googlesource.com/chromium/src/gpu/+/refs/heads/main/config/software_rendering_list.json

130 BIBLIOGRAPHY

Patrick Cronin, Xing Gao, Haining Wang, and Chase Cotton. An exploration of ARM

system-level cache and GPU side channels. In ACSAC, pages 784–795, 2021. doi:

10.1145/3485832.3485902.

Miles Dai, Riccardo Paccagnella, Miguel Gomez-Garcia, John McCalpin, and Mengjia Yan.

Don’t mesh around: Side-Channel attacks and mitigations on mesh interconnects. In

USENIX Security, pages 2857–2874, 2022.

L. Peter Deutsch and Allan M. Schi�man. E�cient implementation of the smalltalk-80

system. In POPL, pages 297–302, 1984. doi: 10.1145/800017.800542.

Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Jump over ASLR:

Attacking branch predictors to bypass ASLR. In MICRO, pages 1–13, 2016. doi: 10.1109/

micro.2016.7783743.

Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Ponomarev.

BranchScope: A new side-channel attack on directional branch predictor. In ACM
SIGPLAN Notices, pages 693–707, 2018. doi: 10.1145/3296957.3173204.

The OWASP Foundation. The OWASP secure headers project. URL https://owasp.org/
www-project-secure-headers/ .

Enes Göktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and Cristiano Giu�rida.

Speculative probing: Hacking blind in the Spectre era. In CCS, pages 1871–1885, 2020.

doi: 10.1145/3372297.3417289.

Xun Gong, Nikita Borisov, Negar Kiyavash, and Nabil Schear. Website detection using

remote tra�c analysis. In PETS, pages 58–78, 2012. doi: 10.1007/978-3-642-31680-7_4.

Google. Leaky page, 2021. URL https:// leaky.page.

Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giu�rida. Translation leak-aside

bu�er: Defeating cache side-channel protections with TLB attacks. In USENIX Security,

pages 955–972, 2018.

https://owasp.org/www-project-secure-headers/
https://owasp.org/www-project-secure-headers/
https://leaky.page

BIBLIOGRAPHY 131

David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games - bringing access-

based cache attacks on AES to practice. In IEEE SP, pages 490–505, 2011. doi: 10.1109/

SP.2011.22.

Berk Gülmezoglu. Xai-based microarchitectural side-channel analysis for website �nger-

printing attacks and defenses. IEEE TDSC, pages 4039–4051, 2021. doi: 10.1109/tdsc.

2021.3117145.

Noam Hadad and Jonathan Afek. Overcoming (some) Spectre browser mitigations, 2018.

URL https://alephsecurity.com/2018/06/26/ spectre-browser-query-cache/ .

Jamie Hayes and George Danezis. k-�ngerprinting: A robust scalable website �ngerprint-

ing technique. In USENIX Security, pages 1187–1203, 2016.

Scott Helme. Top 1 million analysis - june 2022. URL https:// scotthelme.co.uk/
top-1-million-analysis-june-2022/ .

Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website �ngerprinting:

attacking popular privacy enhancing technologies with the multinomial naïve-bayes

classi�er. In CCSW, pages 31–42, 2009. doi: 10.1145/1655008.1655013.

Andrew Hintz. Fingerprinting websites using tra�c analysis. In PETS, pages 171–178,

2002. doi: 10.1007/3-540-36467-6_13.

Urs Hölzle, Craig Chambers, and David Ungar. Optimizing dynamically-typed object-

oriented languages with polymorphic inline caches. In ECOOP, pages 21–38, 1991. doi:

10.1007/bfb0057013.

Anxin Huang, Chen Zhu, Dewen Wu, Yi Xie, and Xiapu Luo. An adaptive method for

cross-platform browser history sni�ng. In MADWeb, pages 1–7, 2020. doi: 10.14722/

madweb.2020.23006.

Lin-Shung Huang, Alexander Moshchuk, Helen J. Wang, Stuart Schecter, and Collin

Jackson. Clickjacking: Attacks and defenses. In USENIX Security, pages 413–428, 2012.

Intel. Intel 64 and IA-32 architectures software developer’s manual. URL https://www.
intel.com/content/www/us/en/developer/articles/ technical/ intel-sdm.html.

https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/
https://scotthelme.co.uk/top-1-million-analysis-june-2022/
https://scotthelme.co.uk/top-1-million-analysis-june-2022/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

132 BIBLIOGRAPHY

Artur Janc and Lukasz Olejnik. Web browser history detection as a real-world privacy

threat. In ESORICS, pages 215–231, 2010. doi: 10.1007/978-3-642-15497-3_14.

Jan Jancar, Marcel Fourné, Daniel De Almeida Braga, Mohamed Sabt, Peter Schwabe, Gilles

Barthe, Pierre-Alain Fouque, and Yasemin Acar. “They’re not that hard to mitigate”:

What cryptographic library developers think about timing attacks. In IEEE SP, pages

632–649, 2022. doi: 10.1109/SP46214.2022.9833713.

Rob Jansen, Marc Juarez, Rafa Galvez, Tariq Elahi, and Claudia Diaz. Inside job: Applying

tra�c analysis to measure tor from within. In NDSS, 2018. doi: 10.14722/ndss.2018.23261.

Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt. A critical

evaluation of website �ngerprinting attacks. In CCS, pages 263–274, 2014. doi: 10.1145/

2660267.2660368.

David A Kaplan. Optimization and ampli�cation of cache side channel signals, 2023.

Georgios Karopoulos, Dimitris Geneiatakis, and Georgios Kambourakis. Neither good nor

bad: A large-scale empirical analysis of HTTP security response headers. In TrustBus,
pages 83–95, 2021. doi: 10.1007/978-3-030-86586-3_6.

Daniel Katzman, William Kosasih, Chitchanok Chuengsatiansup, Eyal Ronen, and Yuval

Yarom. The gates of time: Improving cache attacks with transient execution. In USENIX
Security, 2023.

Jason Kim, Stephan van Schaik, Daniel Genkin, and Yuval Yarom. iLeakage: Browser-based

timerless speculative execution attacks on apple devices. In CCS, pages 2038–2052, 2023.

doi: 10.1145/3576915.3616611.

Kinsta. Global desktop browser market share. URL https://kinsta.com/
browser-market-share/ .

Vladimir Kiriansky and Carl A. Waldspurger. Speculative bu�er over�ows: Attacks and

defenses, 2018.

Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian Dabrowski, David Gens,

Yeoul Na, Stijn Volckaert, and Michael Franz. PKRU-Safe: Automatically locking down

https://kinsta.com/browser-market-share/
https://kinsta.com/browser-market-share/

BIBLIOGRAPHY 133

the heap between safe and unsafe languages. In EuroSys, pages 132–142, 2022. doi:

10.1145/3492321.3519582.

Ofek Kirzner and Adam Morrison. An analysis of speculative type confusion vulnerabilities

in the wild. In USENIX Security, 2021.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike

Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval

Yarom. Spectre attacks: Exploiting speculative execution. In IEEE SP, pages 1–19, 2019.

doi: 10.1109/SP.2019.00002.

David Kohlbrenner and Hovav Shacham. On the e�ectiveness of mitigations against

�oating-point timing channels. In USENIX Security, pages 69–81, 2017.

Jakob Koschel, Cristiano Giu�rida, Herbert Bos, and Kaveh Razavi. TagBleed: Breaking

KASLR on the isolated kernel address space using tagged TLBs. In EuroS&P, pages

309–321, 2020. doi: 10.1109/eurosp48549.2020.00027.

Robert Kotcher, Yutong Pei, Pranjal Jumde, and Collin Jackson. Cross-origin pixel stealing:

Timing attacks using CSS �lters. In CCS, pages 1055–1062, 2013. doi: 10.1145/2508859.

2516712.

Butler W. Lampson. A note on the con�nement problem. Communications of the ACM,

pages 613–615, 1973. doi: 10.1145/362375.362389.

Arturs Lavrenovs and F. Jesus Rubio Melon. HTTP security headers analysis of top one

million websites. In CyCon, pages 345–370, 2018. doi: 10.23919/CYCON.2018.8405025.

Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and

reversals. In Soviet Physics Doklady, pages 707–710, 1966.

Shuai Li, Huajun Guo, and Nicholas Hopper. Measuring information leakage in website

�ngerprinting attacks and defenses. In CCS, pages 1977–1992, 2018. doi: 10.1145/

3243734.3243832.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders

Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike

134 BIBLIOGRAPHY

Hamburg. Meltdown: Reading kernel memory from user space. In USENIX Security,

pages 973–990, 2018.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-level cache side-

channel attacks are practical. In IEEE SP, pages 605–622, 2015. doi: 10.1109/SP.2015.43.

Andrea Mambretti, Alexandra Sandulescu, Alessandro Sorniotti, William Robertson, Engin

Kirda, and Anil Kurmus. Bypassing memory safety mechanisms through speculative

control �ow hijacks, 2020.

Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann, Olivier Heen, and

Aurélien Francillon. Reverse engineering Intel last-level cache complex addressing using

performance counters. In RAID, pages 48–65, 2015. doi: 10.1007/978-3-319-26362-5_3.

MDN Contributors. The <fecomponenttransfer> svg �lter primitive, a. URL https://
developer.mozilla.org/en-US/docs/Web/SVG/Element/ feComponentTransfer .

MDN Contributors. Privacy and the :visited selector, b. URL https://developer.mozilla.org/
en-US/docs/Web/CSS/Privacy_and_the_:visited_selector .

MDN Contributors. Cross-origin-embedder-policy, 2024a. URL https://developer.mozilla.
org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy.

MDN Contributors. Cross-origin-opener-policy, 2024b. URL https://developer.mozilla.org/
en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy.

Benedikt Meurer. An introduction to speculative optimization in v8, 2017. URL https:
//ponyfoo.com/articles/an-introduction-to-speculative-optimization-in-v8.

Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. CacheZoom: How SGX

ampli�es the power of cache attacks. In CHES, pages 69–90, 2017. doi: 10.1007/

978-3-319-66787-4_4.

Mozilla Bug Tracker. SVG �lter timing attack, 2013. URL https://bugzilla.mozilla.org/
show_bug.cgi?id=711043.

Mozilla Foundation. Public su�x list, 2020. URL https://publicsu�x.org/ .

https://developer.mozilla.org/en-US/docs/Web/SVG/Element/feComponentTransfer
https://developer.mozilla.org/en-US/docs/Web/SVG/Element/feComponentTransfer
https://developer.mozilla.org/en-US/docs/Web/CSS/Privacy_and_the_:visited_selector
https://developer.mozilla.org/en-US/docs/Web/CSS/Privacy_and_the_:visited_selector
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://ponyfoo.com/articles/an-introduction-to-speculative-optimization-in-v8
https://ponyfoo.com/articles/an-introduction-to-speculative-optimization-in-v8
https://bugzilla.mozilla.org/show_bug.cgi?id=711043
https://bugzilla.mozilla.org/show_bug.cgi?id=711043
https://publicsuffix.org/

BIBLIOGRAPHY 135

Mozilla Foundation. Project Fission, 2022. URL https://wiki.mozilla.org/Project_Fission.

Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael Abu-Ghazaleh. Rendered

insecure: GPU side channel attacks are practical. In CCS, pages 2139–2153, 2018. doi:

10.1145/3243734.3243831.

Nick Nguyen. The best �refox ever, 2017. URL https://blog.mozilla.org/en/products/�refox/
faster-better-�refox/ .

Keith O’Neal and Scott Yilek. Interactive history sni�ng with dynamically-generated

QR codes and CSS di�erence blending. In SP Workshops, pages 335–341, 2022. doi:

10.1109/spw54247.2022.9833863.

Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D. Keromytis.

The spy in the sandbox: Practical cache attacks in JavaScript and their implications. In

CCS, pages 1406–1418, 2015. doi: 10.1145/2810103.2813708.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: The

case of AES. In CT-RSA, pages 1–20, 2006. doi: 10.1007/11605805_1.

Rodney Owens and Weichao Wang. Non-interactive OS �ngerprinting through memory

de-duplication technique in virtual machines. In IPCCC, pages 1–8, 2011. doi: 10.1109/

pccc.2011.6108094.

Riccardo Paccagnella, Licheng Luo, and Christopher W Fletcher. Lord of the ring(s): Side

channel attacks on the CPU On-Chip ring interconnect are practical. In USENIX Security,

pages 645–662, 2021.

Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. Website �nger-

printing in onion routing based anonymization networks. In WPES, pages 103–114,

2011. doi: 10.1145/2046556.2046570.

Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas Zinnen, Martin

Henze, and Klaus Wehrle. Website �ngerprinting at internet scale. In NDSS, 2016. doi:

10.14722/ndss.2016.23477.

Colin Percival. Cache missing for fun and pro�t. In BSDCan, 2005.

https://wiki.mozilla.org/Project_Fission
https://blog.mozilla.org/en/products/firefox/faster-better-firefox/
https://blog.mozilla.org/en/products/firefox/faster-better-firefox/

136 BIBLIOGRAPHY

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Mangard.

DRAMA: Exploiting DRAM addressing for cross-CPU attacks. In USENIX Security,

pages 565–581, 2016.

Filip Pizlo. What Spectre and Meltdown mean for WebKit, 2018. URL https://webkit.org/
blog/8048/what-spectreand-meltdown-mean-for-webkit/ .

Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. Prime+Scope: Overcoming the

observer e�ect for high-precision cache contention attacks. In CCS, pages 2906–2920,

2021. doi: 10.1145/3460120.3484816.

Charles Reis, Adam Barth, and Carlos Pizano. Browser security: lessons from google

chrome. Communications of the ACM, pages 45–49, 2009. doi: 10.1145/1551644.1556050.

Charles Reis, Alexander Moshchuk, and Nasko Oskov. Site isolation: Process separation

for web sites within the browser. In USENIX Security, pages 1661–1678, 2019.

Xida Ren, Logan Moody, Mohammadkazem Taram, Matthew Jordan, Dean M. Tullsen,

and Ashish Venkat. I see dead µops: Leaking secrets via Intel/AMD micro-op caches.

In ISCA, pages 361–374, 2021. doi: ISCA52012.2021.00036.

Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom van Goethem, and Wouter Joosen.

Automated website �ngerprinting through deep learning. NDSS, 2018. doi: 10.14722/

ndss.2018.23105.

Gustav Rydstedt, Baptiste Gourdin, Elie Bursztein, and Dan Boneh. Framing attacks on

smart phones and dumb routers: Tap-jacking and geo-localization attacks. In WOOT,

2010.

Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Mangard. Fantastic

timers and where to �nd them: High-resolution microarchitectural attacks in JavaScript.

In Financial Cryptography, pages 247–267, 2017. doi: 10.1007/978-3-319-70972-7_13.

Igor Sheludko and Santiago Aboy Solanes. Pointer compression in V8, 2020. URL https:
//v8.dev/blog/pointer-compression.

https://webkit.org/blog/8048/what-spectreand-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectreand-meltdown-mean-for-webkit/
https://v8.dev/blog/pointer-compression
https://v8.dev/blog/pointer-compression

BIBLIOGRAPHY 137

Basavesh Ammanaghatta Shivakumar, Jack Barnes, Gilles Barthe, Sunjay Cauligi,

Chitchanok Chuengsatiansup, Daniel Genkin, Sioli O’Connell, Peter Schwabe, Rui Qi

Sim, and Yuval Yarom. Spectre declassi�ed: Reading from the right place at the wrong

time. In IEEE SP, pages 1753–1770, 2023. doi: 10.1109/SP46215.2023.10179355.

Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal, Yossi

Oren, and Yuval Yarom. Robust website �ngerprinting through the cache occupancy

channel. In USENIX Security, pages 639–656, 2019.

Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin, Yossi Oren, and

Yuval Yarom. Prime+Probe 1, JavaScript 0: Overcoming browser-based side-channel

defenses. In USENIX Security, pages 2863–2880, 2021.

Michael Smith, Craig Disselkoen, Shravan Narayan, Fraser Brown, and Deian Stefan.

Browser history re: visited. In WOOT, 2018.

Marco Squarcina, Mauro Tempesta, Lorenzo Veronese, Stefano Calzavara, and Matteo

Ma�ei. Can i take your subdomain? exploring Same-Site attacks in the modern web. In

USENIX Security, pages 2917–2934, 2021.

statista. Combined desktop and mobile visits to Tumblr.com from May 2019 to January 2021,

2021. URL https://www.statista.com/statistics/261925/unique-visitors-to-tumblrcom/ .

Paul Stone. Pixel perfect timing attacks with HTML5, 2013.

Hritvik Taneja, Jason Kim, Jie Je� Xu, Stephan van Schaik, Daniel Genkin, and Yuval

Yarom. Hot pixels: Frequency, power, and temperature attacks on GPUs and ARM SoCs.

USENIX Security, 2023.

The HTTP Archive. The HTTP archive almanac. URL http://almanac.httparchive.org/en/
2022/ security.

Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler, Peter

Druschel, and Deepak Garg. ERIM: secure, e�cient in-process isolation with protection

keys (MPK). In USENIX Security, pages 1221–1238, 2019.

https://www.statista.com/statistics/261925/unique-visitors-to-tumblrcom/
http://almanac.httparchive.org/en/2022/security
http://almanac.httparchive.org/en/2022/security

138 BIBLIOGRAPHY

Jo van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A practical attack framework

for precise enclave execution control. In SysTEX@SOSP, pages 4:1–4:6, 2017. doi:

10.1145/3152701.3152706.

Victor van der Veen and Ben Gras. DramaQueen: Revisiting side channels in DRAM. In

DRAMSec, 2023.

Stephan van Schaik, Cristiano Giu�rida, Herbert Bos, and Kaveh Razavi. Malicious

Management Unit: Why stopping cache attacks in software is harder than you think.

In USENIX Security, pages 937–954, 2018.

Pepe Vila, Boris Köpf, and José F. Morales. Theory and practice of �nding eviction sets.

In IEEE SP, pages 39–54, 2019. doi: 10.1109/sp.2019.00042.

Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris Köpf. CacheQuery: Learning

replacement policies from hardware caches. In PLDI, pages 519–532, 2020. doi:

10.1145/3385412.3386008.

Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn Volckaert. You shall not

(by)pass! practical, secure, and fast PKU-based sandboxing. In EuroSys, pages 266–282,

2022. doi: 10.1145/3492321.3519560.

Frederick M Waltz and John WV Miller. E�cient algorithm for Gaussian blur using

�nite-state machines. In Machine Vision Systems for Inspection and Metrology VII, pages

334–341, 1998. doi: 10.1117/12.326976.

Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li. MeshUp: Stateless cache side-channel

attack on CPU mesh. In IEEE SP, pages 1506–1524, 2022. doi: 10.1109/SP46214.2022.

9833794.

Tao Wang and Ian Goldberg. Improved website �ngerprinting on Tor. In WPES, pages

201–212, 2013. doi: 10.1145/2517840.2517851.

Yao Wang, Andrew Ferraiuolo, and G Edward Suh. Timing channel protection for a shared

memory controller. In HPCA, pages 225–236, 2014. doi: 10.1109/hpca.2014.6835934.

BIBLIOGRAPHY 139

Yingchen Wang, Riccardo Paccagnella, Elizabeth He, Hovav Shacham, Christopher W.

Fletcher, and David Kohlbrenner. Hertzbleed: Turning power side-channel attacks into

remote timing attacks on x86. In USENIX Security, 2022.

Yingchen Wang, Riccardo Paccagnella, Alan Wandke, Zhao Gang, Grant Garrett-Grossman,

Christopher W. Fletcher, David Kohlbrenner, and Hovav Shacham. DVFS frequently

leaks secrets: Hertzbleed attacks beyond SIKE, cryptography, and CPU-only data. In

IEEE SP, 2023. doi: 10.1109/SP46215.2023.10179326.

Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and Mohammad Abdullah Al Faruque.

Leaky DNN: Stealing deep-learning model secret with GPU context-switching side-

channel. In DSN, pages 125–137, 2020. doi: 10.1109/DSN48063.2020.00031.

Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy Campbell,

and Josep Torrellas. Attack directories, not caches: Side channel attacks in a non-

inclusive world. In IEEE SP, pages 888–904, 2019. doi: 10.1109/SP.2019.00004.

Yuval Yarom and Katrina Falkner. Flush+Reload: a high resolution, low noise, L3 cache

side-channel attack. In USENIX Security, pages 719–732, 2014.

Ruiyi Zhang, Taehyun Kim, Daniel Weber, and Michael Schwarz. (m)wait for it: Bridging

the gap between microarchitectural and architectural side channels. In USENIX Security,

2023.

Tao Zhang, Kenneth Koltermann, and Dmitry Evtyushkin. Exploring branch predictors

for constructing transient execution trojans. In ASPLOS, pages 667–682, 2020. doi:

10.1145/3373376.3378526.

141

Appendix A

Full Address Calculation

Alongside pointer compression, Chrome’s JavaScript engine employs a technique known

as value tagging (Sheludko and Solanes, 2020), which enables it to use the same 32-bit

space to represent both integers and pointers.

The least signi�cant bit (LSB) is used to di�erentiate whether the 32-bit value encodes

an integer or a pointer to an object. For integers, the LSB is unset, and the remaining

31 bits represent the integer value. For pointers, the LSB is set, and the o�set for any

access involving the pointer is decremented by one – this can be accomplished because

all objects are aligned to a 4-byte multiple. Operations on values then check the least

signi�cant bit to determine whether the value is an integer or a pointer, removing the

need for indirection in integer operations or the need for an additional type-identifying

�eld.

Because Chrome does not use value tagging for internal �elds, Chrome interprets the

external and base �elds of Uint8Array as a regular 64-bit address and 32-bit integer.

In contrast, the �elds of AttackerClass are value tagged and will be encoded as 31-bit

integers by shifting their values one bit to the left. When we trigger type confusion, values

that we stored in our AttackerClass object will be interpreted di�erently by Chrome.

We can partially resolve this di�erence in representation by reversing the e�ects

of the value encoding (shifting every value one bit to the right), but we cannot set the

least signi�cant bit of any �eld. Since two �elds are confused with external (the 64-bit

address), we cannot directly set bits 1 and 33 of the address.

We overcome this challenge by abusing how array indexing adds the external and

base �elds to the index. Speci�cally, we set most of the address bits in external and use

base and the index to induce over�ows to set bits 1 and 33 of the address. To set bit 1,

142 Appendix A. Full Address Calculation

we leave base as 0 and set index to 1. To set bit 33, we set base to 0xFFFFFFFE and set

index to 2. To set both bits, we set base to 0xFFFFFFFE and set index to 3.

	Contents
	List of Figures
	List of Listings
	List of Tables
	Statement of Originality
	Acknowledgements
	Introduction
	Analysing Coarse-Grained Side-Channel Leakage
	Mounting a High-Capacity Pixel-Stealing Attack
	Mounting a Transient-Execution Attack on Modern Browsers
	Transient-Execution Attacks on Security Type Systems
	Summary of Contributions
	Structure of Thesis
	Other Publications

	Background
	Microarchitecture
	Memory Caches
	Execution

	Microarchitectural Attacks
	Cache Timing Attacks
	Transient-Execution Attacks

	Browsers
	Same-Site Policy
	JavaScript
	Browser Architecture
	Uint8Array

	Browser-Based Attacks
	Website-Fingerprinting Attacks
	History Sniffing Attacks
	Pixel-Stealing Attacks

	Attributing Microarchitectural Leakage within Systems
	Analysis Overview
	Measurement Primitives
	Measurement Collection
	Experiment Setup

	Controlling Channel Contributions
	Intracore Contention
	Interrupt Handling
	Frequency Scaling
	Cache
	Validating Control
	Remaining Leakage

	Verifying Channel Contributions
	Intracore Contention
	Interrupt Handling
	Frequency Scaling
	Cache

	Measuring Channel Contributions
	Methodology
	Contributions of Channels

	Conclusion

	Mounting a High-Capacity Pixel-Stealing Attack
	Overcoming Cross-Origin Isolation
	Leaking Pixels
	The feComponentTransfer Filter
	Executing feComponentTransfer on the CPU

	Recovering Pixels
	Detecting Transmitter Communications
	Evaluation
	Varying Payload Size
	Identifying the Target Set
	System Noise

	Comparisons to Existing Works

	From Pixel Stealing to Text Stealing
	Text Stealing Results

	History Sniffing
	Straightforward History Sniffing
	Set Query Optimisation
	Experiment Description
	Results

	Countermeasures
	Limitations & Future Work
	Conclusions

	Mounting a Transient Execution Attack on Modern Browsers
	Spook.js: Mounting Transient Execution Attacks in Chrome
	Website Consolidation
	Breaking Address Space Isolation
	Avoiding Deoptimisation
	Obtaining Deep Speculation
	End-to-End Attack Performance

	Attack Scenarios
	Website Identification
	Recovering Sensitive Information
	Attacking Credential Managers
	Attacking Tumblr
	Exploiting Unintended Content Uploads

	Exploiting Malicious Extensions
	Attacking Additional Browsers
	Countermeasures
	Limitations
	Conclusion

	Security Type Systems and Transient Execution
	AES Background
	PoC Attack
	Conclusion

	Conclusion
	Full Address Calculation

