SUs cpyop LOWE

THE UNIVERSITY

o ADELAIDE

Browser-Based Microarchitectural
Side-Channel Attacks

Sioli O’Connell

A thesis submitted for the degree of
DOCTOR OF PHILOSOPHY
The University of Adelaide

Supervised by
Yuval Yarom and
Damith Ranasinghe

January 2025

Contents

Contents

List of Figures

List of Listings

List of Tables

Statement of Originality

Acknowledgements

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6

Analysing Coarse-Grained Side-Channel Leakage
Mounting a High-Capacity Pixel-Stealing Attack
Mounting a Transient-Execution Attack on Modern Browsers
Transient-Execution Attacks on Security Type Systems
Summary of Contributions 0.
Structure of Thesis
1.6.1 Other Publications

2 Background

2.1

2.2

Microarchitecture
211 MemoryCaches.
2.1.2 Execution e
Microarchitectural Attacks

1ii

iii

vii

ix

xi

XV

xvii

O 00 J U1 W =

iv

3

2.21 Cache Timing Attacks 18
2.2.2 Transient-Execution Attacks. 20
23 Browsers e e e 21
23.1 Same-Site Policy 21
23.2 JavaScript 22
2.3.3 Browser Architecture L. L Lo 23
234 Uint8Array e 24
2.4 Browser-Based Attacks 25
241 Website-Fingerprinting Attacks 25
2.4.2 History Sniffing Attacks 26
243 Pixel-Stealing Attacks Lo oL 27
Attributing Microarchitectural Leakage within Systems 29
3.1 AnalysisOverview 31
3.1.1 Measurement Primitives oL 31
3.1.2 Measurement Collection 33
3.1.3 ExperimentSetup o 35
3.2 Controlling Channel Contributions 35
3.2.1 Intracore Contention 36
3.22 InterruptHandling 36
3.23 Frequency Scaling 38
324 Cache 38
3.25 Validating Control 39
3.2.6 Remaining Leakage 40
3.3 Verifying Channel Contributions 40
3.3.1 Intracore Contention 41
3.3.2 InterruptHandling 42
3.3.3 Frequency Scaling 43
334 Cache 44
3.4 Measuring Channel Contributions 46
341 Methodology 46
3.4.2 Contributions of Channels 47
35 Conclusion 49

4 Mounting a High-Capacity Pixel-Stealing Attack

5

4.1 Overcoming Cross-Origin Isolation
42 LeakingPixels
42.1 The feComponentTransfer Filter

4.2.2 Executing feComponentTransfer onthe CPU

43 RecoveringPixels
43.1 Detecting Transmitter Communications

432 Evaluation o
Varying Payload Size

Identifying the TargetSet
SystemNoise

4.3.3 Comparisons to Existing Works

4.4 From Pixel Stealing to Text Stealing
441 TextStealingResults

45 History Sniffing L
4.5.1 Straightforward History Sniffing

45.2 Set Query Optimisation

453 Experiment Description
454 Results.

4.6 Countermeasures i e
4.7 Limitations & Future Work Lo o oo
48 Conclusions

Mounting a Transient Execution Attack on Modern Browsers

5.1 Spook.js: Mounting Transient Execution Attacks in Chrome
5.1.1 Website Consolidation
5.1.2 Breaking Address Space Isolation
5.1.3 Avoiding Deoptimisation.
5.1.4 Obtaining Deep Speculation
5.1.5 End-to-End Attack Performance.

5.2 AttackScenarios L oL
5.2.1 Website Identification
5.2.2 Recovering Sensitive Information

51
53
54
56
58
61
61
64
65
66
67
68
69
72
72
73
74
75
77
77
78
79

vi

53
5.4
3.5
5.6
5.7

5.2.3 Attacking Credential Managers
5.24 AttackingTumblro
5.2.5 Exploiting Unintended Content Uploads
Exploiting Malicious Extensions
Attacking Additional Browsers oL
Countermeasures
Limitations e
Conclusion L

6 Security Type Systems and Transient Execution

6.1
6.2
6.3

AES Background
PoC Attack e,
Conclusion

7 Conclusion

A Full Address Calculation

115
117
118
120

123

141

vii

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
5.2
53
5.4

Uint8Array Memory Layout 25
Baseline 34
Reduced Leakage 39
Intracore Leakage 41
Interrupt Leakage 42
Frequency Scaling Leakage 44
CacheLeakage 45
Overview of a Pixel-Stealing Attack 52
Bypassing Cross-Origin Isolation 55
Recovering Pixel Data 56
Preamble Memory Access Patterns 63
RecoveredImages 65
Packet Size vs. Time & ErrorRates 66
Effect of system noise onleakage 67
Stretching Pixel vs. Vector Content 69
Naive Text Stealing Results 70
Example Regions 71
Layout of Wikipedia Username 72
History Sniffing Memory Access Patterns 76
Comparing Memory Layout 88
Cacheline Overview i 92
Results — Bitbucket — Contents 104

viil

3.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

Results — University — Contact Information 106
Results — University — Bank Details 107
Results — Chrome Password Manager — Passwords 108
Results — LastPass — Passwords 109
Results - Hidden Frame 110
Results — LastPass — CreditCards 110
Results — Tumblr — Password 111
Results — Tumblr — Open Subdomains 112
Results — Google Photos 113

Results — Lastpass — Master Password 113

ix

List of Listings

2.1

3.1
3.2

4.1
4.2
4.3
4.4

5.1
5.2
53

6.1
6.2
6.3

SVGFilter Example 28
Psuedocode for Measurement Primitives 32
Linked-List Element 33
Malicious filter definition Lo 57
Firefox’s feComponentTransfer implementation 58
Applying apreamble o o L o oL 62
History Sniffing CSSStyle 73
Pseudocode for Array Accesses 87
Pseudocode for Speculative Type Confusion 90
Pseudocode for Finding Objects that Straddle Cachelines 93
One-Time Pad Example 116
Protected AES Implementation, . 121
Pseudocode for AES Attack 122

xi

List of Tables

3.1
3.2
3.3

4.1
4.2
4.3
4.4

5.1
5.2

System Configurations 35
Interrupt Leakage (By device) 43
Correlating Channels and Measurement Primitives 48
Filter Execution Location 59
Time To Identify a Target Set 67
Comparing Pixel-Stealing Attacks 68
Set Query Accuracy Results Lo L 81
Spook.js Performance on Various Architectures 95

Spook.js Performance on Braveand Edge 101

xiii

Abstract

Web browsers have become a critical component of the modern computing ecosystem.
They execute code from websites to enable rich interactions; however, this capability can
be exploited by malicious websites to launch attacks directly on user devices. The risk is
further amplified by microarchitectural side-channel attacks, which leverage hardware
characteristics to leak sensitive data. Although comprehensive theoretical countermeas-
ures exist, they are often impractical for use across entire browsers. As a result, browser
vendors have resorted to implementing ad-hoc countermeasures to address these threats.

This issue raises the central question of this thesis: Are these ad-hoc countermeasures
effective in protecting users against microarchitectural side-channel attacks? To answer
this question, the thesis investigates and implements microarchitectural variants of four
attack types: website fingerprinting, pixel stealing, memory disclosure, and reduced-round
encryption attacks.

The thesis begins by investigating the underlying causes of leakage in three recent
microarchitectural website-fingerprinting attacks. The findings reveal that multiple inde-
pendent sources contribute to the observed leakage, each leaking sufficient information
to enable website fingerprinting. These results suggest that effective protection requires
comprehensive and multi-faceted countermeasures.

The thesis then introduces two attacks: Pixel Thief and Spook.js, both of which are
practical, end-to-end microarchitectural attacks implemented in JavaScript and capable
of targeting modern browsers. Pixel Thief is a cache-based pixel-stealing attack that
leverages data-dependent memory access patterns in Scalable Vector Graphics filters
to recover portions of rendered webpages. Spook.js is a memory disclosure attack that
exploits transient type confusion to access arbitrary process memory. Together, these
attacks demonstrate that previous mitigation efforts against microarchitectural threats
are insufficient.

Xiv

Finally, the thesis presents a proof-of-concept (PoC) attack against controlled leakage
in security type systems through a reduced-round encryption attack on the Advanced
Encryption Standard (AES). Security type systems enable developers to annotate secret
values, allowing the compiler to automatically enforce protections against leakage. These
systems often assume sequential execution, however modern processors exhibit out-of-
order execution. The PoC attack exploits this mismatch in execution semantics to leak
secret values by triggering controlled leakage earlier than the developer intended.

While this thesis shows that ad-hoc countermeasures have been insufficient, it does not
claim they are ineffective. The attacks presented here have had reduced impact, required
more sophisticated implementation techniques, and required stronger assumptions of
adversarial capabilities demonstrating the efficacy of these countermeasures. Furthermore,
this work has also informed browser vendors and website operators in the development of
new countermeasures that further reduce the threat posed by microarchitectural attacks.

XV

Statement of Originality

I certify that this work contains no material which has been accepted for the award of any
other degree or diploma in my name, in any university or other tertiary institution and, to
the best of my knowledge and belief, contains no material previously published or written
by another person, except where due reference has been made in the text. In addition, I
certify that no part of this work will, in the future, be used in a submission in my name,
for any other degree or diploma in any university or other tertiary institution without the
prior approval of the University of Adelaide and where applicable, any partner institution
responsible for the joint award of this degree. The author acknowledges that copyright of
published works contained within the thesis resides with the copyright holder(s) of those
works.

I give permission for the digital version of my thesis to be made available on the web,
via the University’s digital research repository, the Library Search and also through web
search engines, unless permission has been granted by the University to restrict access
for a period of time.

I acknowledge the support I have received for my research through the provision of
an Australian Government Research Training Program Scholarship.

xXVii

Acknowledgements

I dedicate this thesis to my family and friends, both academic and personal. I genuinely
appreciate each and every one of you. Thank you for joining me on this long, difficult,
but rewarding journey. Without you, none of this would have been possible.

— Cheers, Sioli

I would like to further thank the following people:
My supervisors Yuval and Damith (and unofficial supervisor Daniel)
My co-authors
My friends at UofA, UMich and Georgia Tech
Finally, my parents Shane and Margaret

Chapter 1

Introduction

Over the past thirty years, the Internet has become an integral part of modern life,
revolutionising communication by connecting billions of people to each other and to the
services they use daily.

The primary gateway to the Internet is the browser, software that connects to and
renders websites. Given their central role in connecting users to online services, browsers
have become a critical component of the modern computing ecosystem. People rely on
them to access everything from routine content to highly sensitive information. As a
result, browsers accumulate vast amounts of sensitive data, making them attractive targets
for adversaries.

Malicious websites attack browsers by exploiting how browsers, by default, automat-
ically execute code embedded within webpages. This code, typically written in JavaScript,
is designed to enable rich, interactive user experiences. However, the same capabilities
can be misused by adversaries to launch attacks from within the browser.

Fortunately, browser vendors are aware of these threats, and modern browsers are
designed to isolate websites from one another and from the rest of the system. A key
component responsible for maintaining this isolation is the JavaScript engine, which
executes JavaScript code within the browser. The JavaScript engine enforces several
security-critical invariants, such as bounds and type checking, and enables the browser
to mediate access to external resources, including the file system, network, and other
websites.

The rest of the browser security model is built upon this foundation. If the JavaScript
engine fails to maintain its security guarantees, a malicious website may be able to launch
attacks against the broader system. This thesis investigates attacks where the JavaScript

2 Chapter 1. Introduction

engine fails to maintain its security guarantees because the hardware itself failed to
maintain its security guarantees.

These attacks exploit optimisations in modern processors that enhance performance
by adapting to patterns observed in past program behaviour. These optimisations create
a flow of information: from program behaviour to the processor’s internal state, and
subsequently to the execution time of future operations. Microarchitectural attacks
reverse this flow by measuring a program execution time, which reveals constraints on the
processor’s internal state and, in turn, on the possible past behaviours of a victim program.
With enough constraints, an adversary can infer sensitive information processed by the
victim.

This thesis focuses on two types of microarchitectural attacks: cache timing attacks and
transient execution attacks. The first cache timing attack on browsers was demonstrated
by Oren et al. (2015), who adapted an earlier technique for recovering memory access
patterns in victim programs (Osvik et al., 2006; Liu et al., 2015) to the browser context.
They used this capability to detect network and mouse activity from other websites and
other programs running on the system.

The first transient execution attack was published by Kocher et al. (2019). They
demonstrated several techniques for manipulating branch prediction in modern processors
and showed how this ability could be used to recover sensitive information in various
scenarios. One such scenario involved bypassing a bounds check in the JavaScript engine
to trigger an out-of-bounds memory access.

These discoveries posed serious challenges for browser vendors, as the security of
browser isolation mechanisms assumed the hardware could maintain its security guaran-
tees. Both cache timing and transient execution attacks revealed that these guarantees are
not maintained in practice. In, response, browser vendors implemented countermeasures
to mitigate the threat of these attacks, including cross-origin isolation (MDN Contributors,
2024b,a) and site isolation (Reis et al., 2019).

Cross-origin isolation limits a website’s ability to simultaneously access high-
resolution timers and embed third-party content, effectively forcing malicious websites to
choose between embedding sensitive third-party content or executing cache attacks to
recover that content. Site isolation places each website in a separate process to mitigate
the threat of transient execution attacks. While transient execution attacks can still access
arbitrary process memory, the accesses remain confined to the isolated process.

1.1. Analysing Coarse-Grained Side-Channel Leakage 3

However, state-of-the-art attack techniques have progressed since the deployment of
these countermeasures, prompting the central question of this thesis:

Are cross-origin isolation and site isolation effective techniques to prevent state-of-the-
art microarchitectural attacks on browsers?

This thesis addresses that question by presenting several novel and practical attacks
that bypass these countermeasures to recover sensitive information from modern browsers.
The remainder of this chapter provides further introduction to each chapter of the thesis,
summarises its key contributions, and outlines its structure.

1.1 Analysing Coarse-Grained Side-Channel Leakage

A key challenge in mounting microarchitectural side channels is that they depend on
the precise behaviour of the microarchitecture, a behaviour that is rarely documented.
Therefore, researchers must rely on experimentation to gather data and construct theor-
etical models that align with the observed behaviour. The goal is that these models are
accurate enough to allow us to design effective countermeasures by accurately predicting
the behaviour of the microarchitecture under a variety of conditions.

This approach has proven remarkably effective when applied to individual microarchi-
tectural components, with successful attacks targeting memory caches Liu et al. (2015);
Osvik et al. (2006); Percival (2005); Yan et al. (2019); Yarom and Falkner (2014), branch
predictors Evtyushkin et al. (2016); Aciicmez et al. (2007, 2006); Evtyushkin et al. (2018);
Zhang et al. (2020), translation lookaside buffers Gras et al. (2018); Koschel et al. (2020);
van Schaik et al. (2018), shared buses Paccagnella et al. (2021); Wan et al. (2022), execution
units Aciicmez and Seifert (2007); Bhattacharyya et al. (2019); Aldaya et al. (2019), and
GPUs Wei et al. (2020); Naghibijouybari et al. (2018); Taneja et al. (2023); Cronin et al.
(2021); Owens and Wang (2011), However, this methodology becomes less effective when
analysing the behaviour of the system as a whole.

Beyond the inherent complexity of modelling an entire system, accurately attribut-
ing observed leakage to specific microarchitectural effects remains a major challenge.
This challenge is evident in three recent microarchitectural website-fingerprinting at-
tacks: cache occupancy (Shusterman et al., 2019), loop counting (Cook et al., 2022), and

4 Chapter 1. Introduction

mwait (Zhang et al., 2023). These attacks identify websites based on site-specific patterns
in overall system performance. While their success demonstrates that the system leaks
information, pinpointing the exact source of the leakage has been a significant challenge.

In particular, disagreement exists over the source of leakage observed in the cache
occupancy attack. Shusterman et al. (2019) attribute the leakage to cache contention,
while Cook et al. (2022) suggest interrupts cause the leakage. Which explanation, if any, is
correct?

Gulmezoglu (2021) proposes a method for attributing leakage to specific browser
behaviours. This approach involves instrumenting the browser to log its behaviour
and correlating these logs with microarchitectural activity using hardware performance
counters. A machine learning model is then trained to perform website fingerprinting,
and explainable Al techniques are used to determine which browser behaviours most
influence the model predictions. While this method effectively links leakage to browser-
level activity, it does not clarify how information flows through specific microarchitectural
channels - a critical detail for designing robust and effective countermeasures.

Cook et al. (2022) take a different approach by controlling various microarchitectural
channels to manage leakage within the system. They conduct experiments across multiple
system configurations to determine which microarchitectural channels contribute to the
observed leakage. While this method helps identify contributing channels, limited control
leaves uncertainty about whether the detected leakage stems from controlled channels or
from uncontrolled leakage elsewhere.

Contributions. Chapter 3 introduces a methodology that addresses these gaps and
resolves the conflicting explanations for leakage in the cache occupancy attack.

The chapter begins by identifying four microarchitectural channels commonly dis-
cussed in the literature: contention for on-core resources, cache contention, interrupts,
and frequency scaling. It then demonstrates methods to control each of these channels,
resulting in the complete elimination of leakage for the loop counting and mwait prim-
itives, and a significant reduction of leakage for the cache occupancy primitive. These
results indicate that the four channels comprehensively explain leakage in the loop count-
ing and mwait cases, while additional uncontrolled channels contribute to leakage in
the cache occupancy case. The chapter further investigates these uncontrolled channels
through experiments suggesting that the remaining leakage originates off-core, likely

1.2. Mounting a High-Capacity Pixel-Stealing Attack 5

within components of the memory hierarchy (Paccagnella et al., 2021; Dai et al., 2022;
Wan et al., 2022; Pessl et al., 2016; van der Veen and Gras, 2023).

With comprehensive control established for the loop counting primitive, the chapter
proceeds to identify which of the four channels contribute to leakage. It demonstrates
that each channel independently provides enough information to mount a website finger-
printing attack, indicating that models and countermeasures focusing on a single channel
are incomplete.

To present a more complete picture of leakage, the chapter concludes by quantifying
the relative contribution of each channel to the total observed leakage. This quantification
is achieved by selecting hardware performance counters that correlate strongly with
leakage through specific channels and calculating their correlation with observations
from each primitive. The results reveal that the primary contributors to leakage are cache
contention for the cache occupancy primitive, frequency scaling for loop counting, and
interrupts for mwait, thereby resolving the conflicting explanations for leakage in the
cache occupancy attack.

1.2 Mounting a High-Capacity Pixel-Stealing Attack

Webpages often include content from multiple sources — the main webpage itself, links
highlighted based on the user browsing history, third-party advertisements, social media
widgets, and more. Browsers are responsible for rendering all this content as a seamless,
cohesive page without leaking sensitive information between the different sources.

One of the key mechanisms browsers use to achieve this is the same-origin policy,
which restricts code from one website from accessing content belonging to another website,
even if both are embedded within the same webpage. Beyond controlling direct access,
browsers also control indirect access including controlling whether code can access the
composited output that is displayed to the screen.

Unfortunately, pixel-stealing attacks bypass this control to reveal sensitive information
displayed on webpages. Several studies have demonstrated how to reveal the colour of
selected pixels by measuring subtle differences in webpage rendering times (Stone, 2013;
Kotcher et al., 2013; Andrysco et al., 2015; Kohlbrenner and Shacham, 2017; Wang et al.,
2023; Taneja et al., 2023). By repeating this process with different pixels, an adversary can
reconstruct arbitrary portions of the webpage.

6 Chapter 1. Introduction

A fundamental limitation of these attacks is their dependence on measuring the time
taken to render the webpage, which restricts the information extraction rate to the browser
rendering frequency - typically 60 times per second. Furthermore, browser vendors have
actively worked to eliminate these timing differences to mitigate previously published
attacks. Although recent studies have shown that CPU and GPU frequency scaling can be
exploited to conduct pixel-stealing attacks, these methods result in even lower leakage
rates (Wang et al., 2023; Taneja et al., 2023).

Beyond the limitations on the rate of information extraction, browser vendors have
widely deployed cross-origin isolation to mitigate a broad range of side-channel attacks.
Cross-origin isolation creates a mutually exclusive condition where a website must choose
between embedding content from other sources or accessing high-resolution timers. As
a result, a malicious website cannot simultaneously embed sensitive content and use
high-resolution timers to mount an attack to recover that content.

Contributions. Chapter 4 addresses the question: Are high-capacity pixel-stealing attacks
on modern browsers feasible? It presents Pixel Thief, a cache-based pixel-stealing attack
that bypasses the rate limit imposed by the browser rendering frequency.

Pixel Thief achieves this by observing data-dependent memory accesses within the
feComponentTransfer filter. This filter is applied to sensitive content, an action allowed
because the side effects of applying filters are assumed to be unobservable. The filter
uses the colour of each pixel in the sensitive content to access a table of colours. The
output of the filter is ignored, but its memory accesses are observed using the Prime+
Probe technique. Each observed memory access reveals the colour of the pixel used to
perform the access. Since the filter performs an access for each pixel, the colour of several
pixels can be leaked during a single invocation of the filter. This decouples the leakage
rate of Pixel Thief from the browser rendering frequency and overcomes the limitations
that constrained previous attacks.

To measure filter memory accesses with Prime+Probe, the chapter introduces a generic
technique to bypass cross-origin isolation. This technique splits the attack across two
webpages: the first embeds sensitive content, while the second uses high-resolution timers
to measure leakage from the first webpage.

The chapter concludes by presenting two end-to-end attacks to demonstrate the
effectiveness of Pixel Thief’s approach. The first adapts a method from Stone (2013)
to modern fonts to increase leakage rates by exploiting redundant information in text,

1.3. Mounting a Transient-Execution Attack on Modern Browsers 7

then uses this method to reveal the victim’s Wikipedia identity. The second abuses link
highlighting to construct an oracle that reveals whether the user previously visited a
specific URL, then queries the oracle with a large number of URLs to partially reconstruct
the victim’s browsing history.

1.3 Mounting a Transient-Execution Attack on Mod-
ern Browsers

The discovery of transient execution attacks sent shockwaves through the industry.
Browsers were particularly vulnerable, as they used software-based isolation techniques
to separate content rendered onto the same webpage. Unfortunately, transient execution
attacks bypass many software-based techniques by enabling adversaries to transiently
execute code before critical security requirements are verified.

In response, Google deployed site isolation for the Chrome browser (Reis et al., 2019).
This countermeasure separates content from different origins into separate processes.
While it does not prevent transient execution attacks from accessing arbitrary memory
within a process, it mitigates the threat of transient execution attacks by leveraging
process isolation guarantees provided by the hardware.

Beyond hardware-based isolation, Chrome employs pointer compression, representing
each pointer as a 32-bit offset from a base address. This reduction in pointer size saves
memory but also restricts the memory accessible to each pointer. Chrome leverages
this limitation, combined with a specialised allocator, to partition the address space and
confine out-of-bounds memory accesses.

Contributions. Chapter 5 addresses the question: Are practical transient-execution attacks
on modern browsers feasible? The chapter presents Spook.js, a transient-execution attack
capable of extracting sensitive information despite the countermeasures deployed by
Chrome.

The chapter begins by highlighting a gap between policies used by the browser
to define the security boundaries between websites. Typically, the same-origin policy
defines the boundary between two websites and is often the boundary developers consider
when designing websites. Site isolation, however, uses the same-site policy to define the
boundary between two websites. This gap creates a scenario where websites considered

8 Chapter 1. Introduction

distinct by developers are combined into the same process undermining site isolations
security benefits.

To bypass Chrome’s address space partitioning and access memory from other websites,
the chapter demonstrates a type-confusion attack which tricks Chrome into accessing a
malicious object as a typed array. Since typed arrays can be shared between webpages,
Chrome allocates them outside of any specific partition and uses a full-sized pointer to
refer to the contents of the typed array. Spook.js crafts a malicious object that takes
control over this pointer to access memory anywhere in the process.

To demonstrate the practicality of Spook.js, the chapter presents several attack scen-
arios grouped by adversarial capabilities. First, scenarios where the adversary controls a
webpage (e.g., a user homepage) and recovers sensitive content displayed on the same
site. Next, scenarios where the adversary uploads content to a cloud service and retrieves
other user data stored on that service. Finally, scenarios where the adversary installs a
malicious extension on the victim’s browser and extract data stored in other extensions.

The chapter concludes by revealing that other browsers, particularly Chrome-based
browsers such as Chromium, Brave, and Edge, are also vulnerable to Spook.js with minimal
adaptation.

1.4 Transient-Execution Attacks on Security Type Sys-
tems

Cryptographic constant-time programming is a widely used technique to mitigate side-
channel attacks. It involves transforming a program so that its observable behaviour
remains consistent regardless of any secret data. Typically, this transformation is per-
formed manually, which can be both time-consuming and error-prone

One way to automate this process is through the use of a security type system, a
programming language feature that enables developers to annotate variables in their
programs with secret or public labels. Tools such as the FaCT compiler (Cauligi et al.,
2019) then use type checking and information-flow analysis to ensure data stored within
secret variables can never leak into public variables.

While this approach is effective, it can be overly restrictive. It prohibits any side effect
from depending on secret variables, even when such dependencies are intentional and

1.5. Summary of Contributions 9

do not pose a security risk. Consider, for example, an encrypted messaging application.
Encryption takes a message and a key as inputs, both of which are stored in secret variables
to protect their integrity. The output is an encrypted message and is safe to reveal. It is
stored in a public variable so that it can be sent over the network. However, because the
encrypted message is derived from the secret key and message, the compiler will reject
the program.

A common solution to this problem is to introduce a declassify operation. This
operation serves as an annotation inserted by the developer to assert that a value obtained
from a secret variable is safe to reveal. In the example above, the developer would insert a
declassify operation after encrypting the message so that it can be sent over the network.

Contributions. Chapter 6 addresses the question: Can values in secret variables uninten-
tionally leak even when declassification is applied correctly?.

The chapter answers the question in the negative, demonstrating a PoC attack on
several implementations of AES, including industry-standard versions and those protected
by the FaCT compiler. The attack exploits branch prediction and out-of-order execution in
modern processors to coerce the processor into declassifying an output before encryption
is correctly applied. Since the output is declassified, the compiler allows it to be revealed.

The chapter provides details for the PoC attack while the accompanying paper (Shiv-
akumar et al., 2023) provides the full theoretical analysis, methods to recover the key from
recovered ciphertexts, and proposed countermeasures to mitigate the issue.

1.5 Summary of Contributions

In summary, the contributions of this thesis are as follows:

Analysing Coarse-Grained Website-Fingerprinting

+ Describes how to control microarchitectural channels to eliminate leakage (Sec-
tion 3.2).

« Establishes that all identified channels contribute to website fingerprinting attacks
(Section 3.3).

10 Chapter 1. Introduction

+ Quantifies leakage through each channel across multiple website finger printing
attacks (Section 3.4).

Mounting a High-Capacity Pixel-Stealing Attack

« Develops a simple method to bypass cross-origin isolation, enabling the use of
high-resolution timers alongside embedded third-party content (Section 4.1).

« Introduces Pixel Thief, a cache-based pixel-stealing attack that exploits content-
dependent memory access patterns in the feComponentTransfer SVG filter to
achieve data extraction rates exceeding the browser rendering frequency (Sec-
tions 4.2 and 4.3).

« Adapts techniques for rapid text recovery using pixel stealing (Section 4.4).

« Demonstrates a fast history-sniffing attack leveraging cache-based pixel stealing
(Section 4.5).

Mounting a Transient-Execution Attack on Modern Browsers

« Introduces Spook.js, a transient memory-disclosure attack capable of reading arbit-
rary memory within rendering processes (Section 5.1).

« Examines the limitations of site isolation and identifies conditions under which
multiple websites are consolidated into the same process (Section 5.2).

« Investigates the security implications of Spook.js on Chrome extensions (Section 5.3).

+ Confirms that other Chromium-based browsers, including Microsoft Edge and Brave,
are also vulnerable to Spook.js (Section 5.4).

Transient-Execution Attacks on Security Type Systems

+ Demonstrates PoC attacks on protected implementations of AES (Chapter 6).

Open Source Code Releases
As part of this thesis, the following open-source code releases have been made:

1.6. Structure of Thesis 11

« https:// github.com/0xADE1A1DE/PixelThief

« https:// github.com/spookjs/ spookjs-poc

1.6 Structure of Thesis

Chapter 2 - Background - provides the essential background on microarchitectural attacks.
It offers a general overview of the behaviour of key microarchitectural components,
explains how measurement primitives exploit this behaviour to extract information,
reviews the history of attacks based on these primitives, and discusses various browser
features relevant to each attack.

Chapter 3 — Analysing Coarse-Grained Side-Channel Leakage — presents and evaluates a
methodology for investigating leakage in coarse-grained side channels.

This chapter has not yet been published. In this work, I developed the approach to
control channels and eliminate leakage, designed the method to establish leakage through
each channel, and supervised experiments conducted by a co-author.

Chapter 4 — Mounting a High-Capacity Plxel Stealing Attack on Modern Browsers —
presents and evaluates a practical, high-capacity attack that recovers portions of rendered
webpages.

This chapter is based on the following publication: Sioli O’Connell, Lishay Aben Sour,
Ron Magen, Daniel Genkin, Yossi Oren, Hovav Shacham, and Yuval Yarom - “Pixel Thief:
Exploiting SVG Filter Leakage in Firefox and Chrome”, USENIX Security 2024.

In this work, I developed the architecture to bypass cross-origin isolation, identified
data-dependent behaviours in SVG filters, and designed and implemented Pixel Thief to
exploit these behaviours. I also designed the text-stealing attack, supervised its imple-
mentation by a co-author, and designed and implemented the history-sniffing attack.

Chapter 5 - Mounting a Transient Execution Attack on Modern Browsers — demonstrates
the first practical transient execution attack on browsers and evaluates it under several
attack scenarios.

https://github.com/0xADE1A1DE/PixelThief
https://github.com/spookjs/spookjs-poc

12 Chapter 1. Introduction

This chapter is based on the following publication: Ayush Agarwal, Sioli O’Connell,
Jason Kim, Shaked Yehezkel, Daniel Genkin, Eyal Ronen, and Yuval Yarom — “Spook.js:
Attacking Chrome Strict Site Isolation via Speculative Execution”, IEEE SP 2022.

In this work, I designed and implemented the Spook.js attack, including using type con-
fusion to break out of Chrome’s partitioned address spaces, identifying suitable malicious
objects, preventing deoptimisation through nested speculation, widening the speculation
window via last-level cache evictions, and porting Spook.js to other Chromium-based
browsers.

Chapter 6 — Declassification and Transient Execution - explores the interaction between
security type systems and transient execution.

This chapter has been published as Basavesh Ammanaghatta Shivakumar, Jack
Barnes, Gilles Barthe, Sunjay Cauligi, Chitchanok Chuengsatiansup, Daniel Genkin, Sioli
O’Connell, Peter Schwabe, Rui Qi Sim, and Yuval Yarom - “Spectre Declassified: Reading
from the Right Place at the Wrong Time”, IEEE SP 2023.

In this work, I developed the PoC attack used to extract partial ciphertexts from
OpenSSL and FaCT implementations of AES.

Chapter 7 - Conclusions — summarises the results, discusses their implications for browser
security, and outlines directions for future research.

1.6.1 Other Publications

The main body of this thesis includes publications to which I made significant contributions.
Other publications in which my role was more limited are have been published as follows:

Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin, Yossi Oren, and
Yuval Yarom - “Prime+Probe 1, Java-Script 0: Overcoming Browser-based Side-Channel
Defenses”, USENIX Security 2021.

Zhiyuan Zhang, Mingtian Tao, Sioli O’Connell, Chitchanok Chuengsatiansup, Daniel
Genkin, and Yuval Yarom - “BunnyHop: Exploiting the Instruction Prefetcher”, USENIX
Security 2023.

Bradley Morgan, Gal Horowitz, Sioli O’Connell, Stephan van Schaik, Chitchanok Chueng-
satiansup, Daniel Genkin, Olaf Maennel, Paul Montague, Eyal Ronen, and Yuval Yarom -

1.6. Structure of Thesis 13

“Slice+Slice Baby: Generating Last-Level Cache Eviction Sets in the Blink of an Eye”, IEEE
SP 2025.

15

Chapter 2

Background

This chapter provides essential background for the rest of the thesis. It is divided into
four sections, the first two detail the internal behaviour of processors and techniques that
exploit these behaviours to measure internal processor state, while the last two focus on
relevant features of web browsers and browser-based attacks.

2.1 Microarchitecture

The microarchitecture refers to the internal design of a processor that determines how it
executes instructions. It includes components such as caches, buffers, pipelines, execution
units, interconnects, and other internal structures. While processors may share the same
Instruction Set Architecture (the interface between the hardware and software), their
microarchitectures can differ significantly.

Unfortunately, processor vendors rarely publish detailed documentation of microar-
chitectural behaviour, which has led various research communities to reverse-engineer
these details to better understand how microarchitectures operate. The rest of this section
provides a concise overview of modern processor microarchitectural behaviours relevant
to this thesis.

2.1.1 Memory Caches

Modern processors use a cache — small, fast memory located directly on the processor -
to reduce the average latency of memory accesses. This improvement is achieved partly

16 Chapter 2. Background

through physical proximity and partly because caches are optimised for low latency at
the expense of data density and power efficiency. The processor stores recently accessed
data in the cache under the assumption that this data will be reused. When the data is
accessed again, the lower latency of the cache results in faster access times, leading to
overall performance improvements.

Structure. The cache is organised as a set-associative structure, consisting of multiple
sets, each containing multiple ways. The processor divides memory into fixed-length units
called cache lines, which are stored in the cache. Each cache line can only be stored in
a single set, determined uniquely by the address of the line, but it can occupy any way
within that set. To identify which line is stored in each way, the cache stores the line
address (or tag) alongside the data. When the processor performs a memory access, it
uses the memory address to determine the set to search, then searches each way for a
matching address. If a match is found, the access is a cache hit, and the data from that
way is returned. If no match is found, the access is a cache miss, and the processor instead
retrieves the data from system memory or a higher-level cache.

Hierarchy. Modern caches are not only set-associative but also organised into a hierarchy.
Lower-level caches (closer to the processor cores) typically have lower latency at the
expense of a smaller capacity, while higher-level caches have larger capacity at the
expense of a higher latency. Usually, the last-level cache is shared among all processor
cores, whereas the lower-level caches are private to each core.

Inclusivity. Some caches are inclusive, meaning that lower-level caches contain a strict
subset of the data stored in higher-level caches. That is, any data present in an inclusive
lower-level cache must also be present in higher-level caches. The processor maintains
this inclusive property by ensuring that when data is evicted from a higher-level cache,
all-inclusive lower-level caches also evict that data.

Other caches exhibit an exclusive property, where lower-level caches do not contain
any data that is also stored in higher-level caches. In this configuration, when data is
moved from a higher-level cache to an exclusive lower-level cache, the processor preserves
exclusivity by evicting the data from the higher-level cache. Consequently, each piece of
data exists in only one level of the cache hierarchy at a time.

Caches that are neither inclusive nor exclusive are referred to as non-inclusive. Like

2.1. Microarchitecture 17

inclusive caches, data copied to a non-inclusive lower-level cache is retained in the higher-
level caches. However, unlike inclusive caches, when data is evicted from the higher-level
caches, non-inclusive lower-level caches will continue to retain a copy of the data.

Replacement Policy. Since sets have a fixed number of ways, they can become full.
When the processor needs to store a new line in a full set, it makes room in the set by
evicting another line and storing that line back in system memory. The line selected
for eviction is determined by the cache replacement policy. A commonly used policy
is the pseudo-least-recently-used (pLRU) policy, which approximates the behaviour of
a true least-recently-used (LRU) policy while requiring fewer resources than a faithful
implementation.

2.1.2 Execution

To improve performance, modern processors employ both out-of-order execution and
superscalar execution. Out-of-order execution allows the processor to execute instructions
as soon as their dependencies are resolved, rather than strictly following the original
program order. Superscalar execution enables each core within the processor to execute
multiple instructions in parallel, rather than processing one instruction at a time. Together,
these features enhance performance by allowing the processor to hide execution delays
and keep its execution units busy with independent instructions.

Branch Prediction. Branches limit the effectiveness of superscalar out-of-order execu-
tion because the outcome of a branch determines which instructions should be executed
next. As a result, all future instructions become implicitly dependent on the branch
condition, preventing their execution until the condition is known. Processors remove
this implicit dependency by predicting the branch outcome and executing the program
under the assumption the prediction is correct. When program execution matches the
prediction, the processor saves time since it did not have to wait for the branch condition.
In cases where program execution does not match the prediction, the processor is said to
have mispredicted. To correct the mispredicted branch, the processor ‘squashes’ (discards)
program execution following the branch, then restarts execution with the correct branch
outcome.

18 Chapter 2. Background

2.2 Microarchitectural Attacks

Microarchitectural side-channel attacks exploit the behaviour of the microarchitecture to
extract sensitive information from other processes running on the same machine. These
attacks leverage unintended links between program secrets and the program’s internal
behaviour. By observing that behaviour — typically through measurements of contention
on shared microarchitectural resources — an attacker can infer those secrets.

In its simplest form, an attack might involve timing how fast a loop executes (Cook
et al., 2022). However, often attacks exploit the nuanced behaviour of individual microar-
chitectural components to induce contention at finer granularities, thereby revealing more
detailed information. Research has demonstrated that the behaviour of many microarchi-
tectural components can be exploited to mount side-channel attacks. These components
include memory caches Liu et al. (2015); Osvik et al. (2006); Percival (2005); Yan et al.
(2019); Yarom and Falkner (2014), branch predictors Evtyushkin et al. (2016); Aciigmez et al.
(2007, 2006); Evtyushkin et al. (2018); Zhang et al. (2020), translation lookaside buffers Gras
et al. (2018); Koschel et al. (2020); van Schaik et al. (2018), shared buses Paccagnella et al.
(2021); Wan et al. (2022), execution units Aclicmez and Seifert (2007); Bhattacharyya et al.
(2019); Aldaya et al. (2019), or GPUs Wei et al. (2020); Naghibijouybari et al. (2018); Taneja
et al. (2023); Cronin et al. (2021); Owens and Wang (2011). The remainder of this section
provides background on the techniques used to mount the attacks described in this thesis,
along with a brief overview of transient-execution attacks.

2.2.1 Cache Timing Attacks

The fundamental idea behind a cache timing attack is that an adversary can infer whether
a specific piece of memory is present in the cache by measuring the time it takes to access
that memory. Fast access times (typically under a hundred CPU cycles) suggest that the
data was served from the cache, meaning the memory was present in the cache at the
time of access. Conversely, slower access times suggest that the memory was not cached
and had to be fetched from a higher level of the memory hierarchy.

On the surface, revealing whether memory is cached does not appear to expose
sensitive information. However, cache state is influenced by memory accesses made by all
programs running on the machine and the patterns of those memory accesses are often

2.2. Microarchitectural Attacks 19

correlated with sensitive information. By measuring cache state, a cache timing attack can
partially reveal these memory access patterns and, in turn, reveal sensitive information.

This thesis mainly employs the Flush+Reload and Prime+Probe techniques to measure
memory access patterns. In both techniques, one party accesses memory (the victim),
while the other attempts to detect these accesses (the adversary). Although these roles
are traditionally referred to as ‘victim’ and ‘adversary’ in the literature, this thesis adopts
alternative terminology: accessor and observer. This naming scheme is chosen to emphas-
ise the broader applicability of these techniques beyond conventional cross-process attack
scenarios. For example, the techniques can be used in reverse engineering, in situations
where the accessor and observer are components of the same program, or as building
blocks within larger attacks where both roles are performed by the adversary.

Flush+Reload. In the Flush+Reload technique (Gullasch et al., 2011; Yarom and Falkner,
2014) the observer starts by flushing the target memory from the cache. The accessor is
then allowed to execute, potentially accessing the target memory. After a short interval,
typically a few thousand processor cycles, the observer measures the time it takes to
access the target memory. Fast access times indicate the memory is stored in the cache,
while slower access times suggests absence from the cache.

The primary advantage of Flush+Reload is its ease of use and low noise levels. How-
ever, its main limitation is that the accessor and observer must share memory; more
precisely, the observer must be able to access the same memory used by the accessor. This
requirement significantly restricts Flush+Reload’s applicability in adversarial settings
simply because the adversary is often unable to access the target memory. Moreover,
Flush+Reload depends on specific instructions to evict memory from the cache, further
limiting its use to cases where the adversary can execute arbitrary instructions.

Prime+Probe. The Prime+Probe technique (Osvik et al., 2006; Liu et al., 2015) overcomes
the limitations of Flush+Reload by exploiting contention within cache sets. The observer
starts by filling every way of a target cache set with ‘junk’ data. After the accessor runs,
the observer measures the time it takes to access this junk data again. A longer access
time indicates that the junk data was likely evicted from the cache, likely because the
processor removed it to make room for data accessed by the accessor, causing the access
to be served from slower system memory.

The primary advantages of Prime+Probe are that the observer does not need to share

20 Chapter 2. Background

memory with the accessor and does not require special instructions. However, there are
two significant challenges to effectively using Prime+Probe.

The first challenge is identifying which junk data to access, known as the (minimal)
eviction set. The eviction set consists of enough memory to fill a target cache set — no
more, no less. Throughout this thesis, we rely on the excellent method developed by Vila
et al. (2019) to find eviction sets.

The second challenge is locating the target cache set to fill, the specific set that serves
memory to the accessor. Typically, the observer employs a brute-force approach: building
an eviction set for each cache set and then using an attack-specific detection method to
determine whether accesses to a given eviction set collide with the accessor’s accesses.

Beyond these challenges, Prime+Probe is slower than Flush+Reload because it needs
to access an entire eviction set, whereas Flush+Reload only needs to access a single piece
of memory. In addition, Prime+Probe yields less precise information than Flush+Reload,
as it detects contention caused by any memory access served from the target cache set,
not just the specific memory location of interest.

2.2.2 Transient-Execution Attacks

Transient-execution attacks are microarchitectural attacks that exploit the execution of
instructions that may later be squashed. In these attacks, the adversary tricks the processor
into executing the program incorrectly, causing behaviour that deviates from the original
program. This often includes accessing memory the program normally would not be able
to access. Although the processor eventually squashes the architectural state associated
with this incorrect execution, there is often a delay between incorrectly executing an
instruction and squashing its effects. This delay is called the speculation window and it
enables an adversary to execute code while the program is in an invalid state. Because the
hardware does not revert all microarchitectural state, the adversary can use the speculation
window to encode secrets into the microarchitectural state, then later recover those secrets
by measuring residual microarchitectural state.

Inducing Branch Mispredicitons. This thesis mainly focuses on incorrect program
execution caused by branch mispredictions. The technique was first described by Kocher
et al. (2019), in which the adversary trains a target branch by repeatedly causing it to be
taken. When the processor encounters the same branch in the future, it will predict that

2.3. Browsers 21

the branch will be taken. After this training step, the adversary moves to an attack step
where they provide a malicious input. This input would cause the branch to be not taken,
but because the processor predicted the branch as taken, it proceeds to take the branch
anyway.

Consider, for example, a program that uses a branch to guard an access into an
array. Under normal execution, whenever the access is performed the branch verified
the provided index was within bounds. However, in a transient-execution attack, this
assumption does not hold. The adversary can supply an out-of-bounds index and induce
the processor to take the branch. The processor then executes the subsequent instructions,
performing an out-of-bounds access reading arbitrary process memory.

Although the processor eventually squashes this incorrect speculative execution, the
adversary can still leak the secret through a side channel. Commonly, secrets are leaked
through the cache due to well-understood behaviour and numerous established attack
techniques.

2.3 Browsers

A web browser is a piece of software that allows users to access and interact with the
World Wide Web. Its primary function is to render websites so users can view and engage
with their content. Websites consist of various resources identified by a Uniform Resource
Locator (URL). To retrieve a resource, the browser connects to a server specified by the
URL hostname and port number, then requests the resource using the Hypertext Transfer
Protocol (HTTP), referencing the URL path. Some of these resources are webpages, files
written in Hypertext Markup Language (HTML) that define the page structure, content,
and visual appearance.

2.3.1 Same-Site Policy

When two resources interact, the web browser consults a security policy to determine
whether the interaction is permitted. Commonly, the browser enforces the same-origin
policy, which allows interaction only when the resources share the same origin — defined
by the domain name, protocol (such as HTTP or HTTPS), and port number of the server.

22 Chapter 2. Background

Notably, the entire domain is considered. For example, foo.example.com and bar.
example. com are different origins because their subdomains, foo and bar, are different.

Websites can opt into different security policies, usually via HTTP Headers — metadata
sent along with each resource. One such policy is the same-site policy, which permits
interaction between resources served from the same site. Unlike the same-origin policy,
the same-site policy considers only the final portion of the domain.

Specifically, the same-site policy considers the Effective Top-Level Domain Plus One
(eTLD+1). The Top-Level Domain refers to the final portion of a domain under which
websites can be registered (e.g., .com.au or .net). The Effective Top-Level Domain includes
domains that allow others to register subdomains (e.g., .github.io or .canva.site). The
Effective Top-Level Domain Plus One refers to the domain immediately preceding the
effective top-level domain, the part registered by website owners (e.g., example.com or
example.github.io).

2.3.2 JavaScript

To enable rich interactive applications, webpages can reference executable resources that
browsers download and run on the user’s device. These executable resources are typically
written in JavaScript - a high-level, dynamically typed, object-oriented programming
language featuring prototypal inheritance.

Objects. Objects are mutable, user-defined collections of properties. Each property has a
name, which must be a string or a symbol, and a value, which can be of any type, including
another object. Properties can be added, modified, or removed after the object is created.

Objects inherit behaviour in JavaScript through prototypal inheritance. Each object
has a special property called its prototype. When a property is accessed on an object but
is not found, the JavaScript engine looks for that property on the object prototype instead.
Since the prototype may be an object too, the JavaScript engine repeats this process until
either the property is found or until there are no more prototypes to check.

Dynamic Typing and Speculative Optimisations. In JavaScript, variables do not have
fixed types. Instead, any value of any type can be assigned to any variable, even if that
variable previously held a value of a different type. JavaScript engines reduce the cost
of this dynamic behaviour by employing speculative optimisations (Meurer, 2017) which
optimise the code under the assumption that variables only store one type of value. This

2.3. Browsers 23

optimisation commonly occurs at the function level, where the engine records argument
types each time the function is called. After several calls, the engine uses this recorded
type information to generate optimised machine code for the function. However, since
future arguments may have different types, the engine inserts checks to verify that the
actual argument types match the speculated types. If the types do not match, the engine
will discard the optimised code and fall back to a more generic, slower implementation.

Hidden Classes. In addition to the challenges of dynamic typing, objects pose their
own challenge since properties can be dynamically added or removed. JavaScript engines
typically use hashmaps to support this dynamic behaviour, but each property lookup
becomes an expensive hashmap lookup. To reduce this overhead, JavaScript engines use
hidden classes to create a static layout for object properties then cache property lookups
as a speculative optimisation (Deutsch and Schiffman, 1984; Chambers et al., 1989; Holzle
et al.,, 1991).

Hidden classes store properties in two data structures — an array holding the property
values and a hashmap mapping properties to their corresponding locations within the
array. When a property is added to a hidden class, the engine appends the property
value to the end of the array and updates the hashmap to map the property name to the
corresponding array location. When looking up a property, whether to read or modify
it, the engine uses the hashmap to find the location of the property value in the array.
Although this approach still requires a hashmap lookup, the location of the property is
shared between all objects with the same hidden class, which enables the engine to cache
the lookup as a speculative optimisation.

2.3.3 Browser Architecture

Modern web use often involves visiting multiple webpages simultaneously, each in its
own window or tab. Historically, browsers employed a monolithic single-process archi-
tecture that handled all browser functions within one process. This architecture is simple,
but it suffers from security and stability issues. For example, if a webpage causes the
browser to crash, the entire browser crashes affecting unrelated webpages. Likewise,
if a malicious webpage exploits a vulnerability in the browser, then the entire browser
becomes compromised.

24 Chapter 2. Background

To address this issue, browser vendors adopted a multi-process architecture consisting
of several renderer processes and a single compositor process (Reis et al., 2009; Nguyen,
2017). If a webpage causes the browser to crash, only the affected renderer process crashes
while the rest of the browser continues unaffected. Similarly, if a malicious webpage
exploits a vulnerability, only the affected renderer process becomes compromised.

Partitions in Chrome. To reduce the memory footprint of renderer processes, the
Chrome browser compresses pointers by representing them as 32-bit offsets from a fixed
base address (Sheludko and Solanes, 2020). This base address defines an isolate within
which memory is allocated. Because pointers are represented as 32-bit offsets, instead of
a full 64-bit address, the amount of memory accessible to each pointer is limited. Chrome
leverages this limitation as a security feature by carefully arranging the address space so
that memory accesses through compressed pointers are constrained to their respective
isolate.

2.3.4 Uint8Array

Typed arrays are a collection of standard objects that enable developers to directly access
and manipulate raw binary data using JavaScript. All typed array data is stored within an
ArrayBuffer or a SharedArrayBuffer. These buffer objects do not provide an interface
for direct data access; instead, one or more typed array views can be instantiated over
the buffer to provide an array-like interface. For example, a Uint8Array exposes its
underlying buffer as an array of 8-bit unsigned integer values.

Whenever a JavaScript program accesses a typed array, the engine first verifies that
the index is valid — specifically, that the index is an integer greater than or equal to zero
and less than the array length. If the index is invalid, the engine does not perform any
memory access.

Implementation in Chrome. In Chrome, typed arrays contain four key fields: the
type, a pointer to the underlying buffer, the length of the underlying buffer, and an offset
into the underlying buffer (used to implement zero-copy slice operations). To support
inexpensive moving and sharing of typed arrays between webpages and JavaScript threads,
the underlying buffer is allocated at an arbitrary address outside of any given isolate.
Consequently, references to the underlying array buffer are represented as full-sized

2.4. Browser-Based Attacks 25

pointers. Figure 2.1 illustrates the memory layout for Uint8Array’s implemented in
Chrome.

l(\

L e TTITTTTIT e 1]2]3]4
hea:der pointer bufvfer
JavaScript Partition Heap

FIGURE 2.1: Uint8Array Memory Layout:
A Uint8Array containing the values 1, 2, 3, 4. Ticks denote the boundaries
of fields, rectangles within each field denote a byte, and colours are used to
highlight where memory is allocated.

2.4 Browser-Based Attacks

Web browsers are commonly targeted owing to the popularity of the web as a platform
and the ease with which an adversary can execute code on a victim’s device. Once an
adversary tricks a victim into visiting a malicious website, through phishing, malicious
advertisements, or other means, they gain the ability to execute code on the victim’s
device. From there, the adversary can mount a variety of attacks against other open
webpages, the browser itself, or the underlying system. Of particular interest to this thesis
are microarchitectural attacks launched from the browser (Oren et al., 2015; Shusterman
et al., 2019, 2021; Andrysco et al., 2015, 2018). This section provides a brief introduction
to website-fingerprinting, history-sniffing, and pixel-stealing attacks.

2.4.1 Website-Fingerprinting Attacks

In a website-fingerprinting attack, the adversary attempts to uncover the identity of a
website visited by the victim. There are two broad attack models for website-fingerprinting
attacks: the on-path and co-located models.

26 Chapter 2. Background

In the more conventional on-path model, the adversary mounts their attack from
a separate machine located somewhere along the communication path between the
victim and the wider internet (Hintz, 2002; Herrmann et al., 2009; Panchenko et al., 2011;
Cai et al,, 2012; Gong et al., 2012; Wang and Goldberg, 2013; Juarez et al., 2014; Hayes
and Danezis, 2016; Panchenko et al., 2016; Rimmer et al., 2018; Jansen et al., 2018; Li
et al., 2018). This position enables the adversary to monitor network packets sent to
and from the victim. Since the contents of each packet are assumed to be encrypted,
the adversary is limited to only using packet size and the timing between packets to
fingerprint a website. Consequently, countermeasures against on-path attacks typically
focus on injecting random delays or spurious traffic to mask these patterns.

Under the co-located model, the adversary mounts their attack directly from the
victim device. This position enables the adversary to indirectly monitor the browser
behaviour through side channels including microarchitectural side channels (Oren et al.,
2015; Shusterman et al., 2021, 2019; Cronin et al., 2021; Naghibijouybari et al., 2018; Taneja
et al., 2023; Cronin et al., 2021).

In either model, the adversary samples browser behaviour over time to construct a
fingerprint then matches it with previously recorded fingerprints to identify the website.

2.4.2 History Sniffing Attacks

In a history-sniffing attack, the adversary aims to reveal the victim’s browsing history.
The defining characteristic of this attack is that the adversary cannot directly access the
history itself. Instead, they rely on an oracle that reveals whether a given URL exists in
the victim’s browsing history then they query the oracle with a large number of URLs to
partially reconstruct the victim’s browsing history.

Many history-sniffing attacks exploit the :visited CSS selector, a usability feature
in browsers that allows pages to change the style of visited links. Using this method, the
adversary creates a page containing multiple links with URLs they wish to query. The
adversary then checks which links have been styled to reveal which URLs have been
visited by the victim. Early attacks could directly read which styles were applied to a
link or could use styles that would alter the page layout to indirectly reveal whether the
style had been applied (Smith et al., 2018; Janc and Olejnik, 2010). In response, browser
vendors deployed countermeasures that remove differences between visited and unvisited

2.4. Browser-Based Attacks 27

link styles. Specifically, whenever a website attempts to query the browser, the browser
will always behave as though the URL is unvisited. In cases where the style makes this
impossible, the browser will simply refuse to apply the style at all.

More recent history-sniffing attacks have bypassed these countermeasures by exploit-
ing timing side channels. Specifically, the adversary creates a style that is computationally
expensive for the browser to apply and uses the : visited selector to apply this style. By
monitoring for performance degradation, the adversary can infer whether the style was
applied (Smith et al., 2018). In response, browser vendors further restricted allowed styles
to a limited set believed to have low performance overhead, such as changing the text
colour or background colour of links (MDN Contributors, b).

2.4.3 Pixel-Stealing Attacks

Pixel-stealing attacks are timing attacks that induce data-dependent delays in browser
rendering to reveal sensitive information displayed on the screen. These attacks apply a
malicious style, designed to be expensive to compute for certain colours but cheap for
others, to an HTML element to create a delay dependent on the element colour. If the
difference in computation time is large enough, the browser misses the deadline to render
the next frame, an event that an attack can detect to reveal the original element colour.

SVG Filters. Attacks typically use SVG filters to create computationally expensive styles.
These filters are small user-defined functions (originally specified by the SVG standard) that
are intended to enable artistic effects, such as blurring, which are difficult or impossible to
achieve with standard HTML and CSS alone. Filters are composed of several filter elements,
primitive operations that the webpage provides parameters for, that are combined together
to form a complete filter. The list of filter elements is specified by the SVG standard
and includes several standard image filtering operations such as colour mapping and
convolutions.

Listing 2.1 demonstrates how to apply a filter to a div element. Lines 3-8 define an
SVG object. Inside the object, Lines 4-7 define the filter. This filter consists of two elements
executed sequentially: A Gaussian blur (Line 5) and image dilation (Line 6). Finally, Line 11
applies the filter to the target div element.

Stealing Cross-Origin Content. Filters can be applied to cross-origin content to allow
designers to create webpages with cohesive filtered appearances. This is assumed to

28 Chapter 2. Background

<html>
<head>
<svg><defs>
<filter id="filter_id">
<feGaussianBlur stdDeviation="1" />
<feMorphology operator="dilate" radius="2" />
</filter>
</defs></svg>
</head>
<body>
<div style="filter: url(#filter_id)"></!/-- content --></div>
</body>
</html>

LisTING 2.1: SVG Filter Example:
A demonstration of how to define an SVG filter and apply it to a specific
element on a webpage.

be safe because the browser restricts access to the output of the filter. Unfortunately,
the presence of side-channels invalidates this assumption and enables adversaries to
recover cross-origin content. Previous studies has demonstrated how differences caused
by algorithmic optimisations in SVG filters (Stone, 2013; Kotcher et al., 2013), computations
on subnormal floating-point numbers (Andrysco et al., 2015; Kohlbrenner and Shacham,
2017), and frequency scaling in modern CPUs and GPUs (Wang et al., 2023; Taneja et al.,
2023) can be exploited to mount pixel-stealing attacks.

29

Chapter 3

Attributing Microarchitectural
Leakage within Systems

Several approaches exist for analysing microarchitectural side-channel leakage, with
the most common method being to reverse-engineer a model of the behaviour of a
specific hardware component and then develop an attack that exploits that behaviour.
The successful execution of the attack is taken as evidence that the reverse engineering is
accurate, and the resulting model is used to provide insight into the leakage. Many studies
have employed this approach for various components, including memory caches (Liu
et al., 2015; Osvik et al., 2006; Percival, 2005; Yan et al., 2019; Yarom and Falkner, 2014),
branch predictors (Evtyushkin et al., 2016; Aciicmez et al., 2007, 2006; Evtyushkin et al.,
2018; Zhang et al., 2020), translation lookaside buffers (Gras et al., 2018; Koschel et al.,
2020; van Schaik et al., 2018), shared buses (Paccagnella et al., 2021; Wan et al., 2022),
execution units (Aciicmez and Seifert, 2007; Bhattacharyya et al., 2019; Aldaya et al., 2019),
and GPUs (Wei et al., 2020; Naghibijouybari et al., 2018; Taneja et al., 2023; Cronin et al.,
2021; Owens and Wang, 2011).

This approach works well when analysing information leakage from specific compon-
ents; however, it is less suited to analysing coarse-grained leakage. Such leakage occurs in
attacks that monitor the system over extended periods of time or monitor large portions
of the microarchitectural state. In either case, it can be difficult to attribute leakage to any
singular microarchitectural effect. The challenge is further compounded by the use of
machine learning classifiers to extract information, as it further obscures which factors
contributed to a successful attack.

As an example of this challenge, consider the cache-occupancy website-fingerprinting

30 Chapter 3. Attributing Microarchitectural Leakage within Systems

attack. In this attack, the adversary measures the speed at which they can repeatedly
iterate though a large buffer of memory to infer which website a victim visits. Successful
cache-occupancy attacks demonstrate that information must be leaked, but Shusterman
et al. (2019) and Cook et al. (2022) provide competing explanations for the mechanism
behind this leakage.

Shusterman et al. (2019) propose that browser memory activity causes evictions in
the adversary’s buffer which, in turn, affects the adversary’s iteration frequency. Cook
et al. (2022) question this explanation and argue that operating system interrupts better
correlate with the adversary’s iteration frequency.

Several studies have begun to tackle this problem. Giilmezoglu (2021) proposed an
approach that uses explainable Al techniques to reveal which browser behaviours leak the
most information. Specifically, they annotate browser behaviour and record it alongside
HPCs. Then, they train a machine learning model to distinguish websites based on the
HPCs and use explainable Al to identify which measurements — and by extension, which
browser behaviours — provided the most information to the model. While this approach
effectively highlights which browser behaviours leak information to an adversary, it falls
short of explaining how the leaked information propagates through the microarchitecture
to the attacker, insight that is crucial for designing effective countermeasures.

Cook et al. (2022) themselves proposed an approach that reveals how information
leaks through the system by performing experiments while controlling microarchitectural
channels. Specifically, they isolate programs using operating system interfaces and inject
noise into specific microarchitectural components. Then, they conduct experiments across
multiple system configurations and measure the effect that these configurations have on
an attack. If the attack performs similarly well, then it is assumed that the controlled
channels must not leak any information. However, they do not fully control all channels,
leaving open the possibility that information leaks through uncontrolled channels.

This chapter addresses these gaps by presenting a method that comprehensively
controls information leakage through microarchitectural channels. Section 3.1 begins
with a description of the primitives underlying three recent website-fingerprinting attacks:
the cache-occupancy attack in question, the loop-counting variant proposed by Cook et al.
(2022), and a third attack proposed by Zhang et al. (2023). Section 3.2 enumerates four
commonly discussed microarchitectural channels and describes methods to completely
control information flow (for some attacks). Section 3.3 leverages this control to investigate

3.1. Analysis Overview 31

each channel and finds that information flows through all four channels. Finally, Section 3.4
examines the relative contribution of each channel to provide insight into the primary
causes of leakage for each primitive — resolving the conflicting explanations for the
cache-occupancy attack.

While the approach presented in this chapter is used in the context of website-
fingerprinting attacks, I hope that it can serve as a basis for a more generic approach to
analysing coarse-grained leakage in the future.

3.1 Analysis Overview

This section provides an overview of the measurement primitives, explains how measure-
ments from these primitives are collected and reported, and describes the hardware and
software used in the experiments presented in this chapter.

3.1.1 Measurement Primitives

Listing 3.1 shows pseudocode for the measurement primitives used in the cache occupancy,
loop counting, and mwait attacks. Each primitive counts the number of operations it
can perform within a fixed period. The cache-occupancy primitive counts the number of
times it can advance a pointer through a linked list, the loop-counting primitive simply
counts the number of loop iterations, and the mwait primitive count the number of times
it can call the wait operation.

The cache-occupancy primitive employs a linked list that covers the size of the last-
level cache. Each element in the list occupies a full cache line and contains pointers
to the next and previous elements (Listing 3.2). The order of the elements in the list is
randomised to minimise the effects of prefetching. As an optimisation, the first and last
elements are linked together to enable the cache-occupancy primitive to iterate through
the list multiple times without needing special handling for the end of the list.

This work differs from previous approaches, which iterate through the entire list in
every loop iteration (Cook et al., 2022; Shusterman et al., 2019, 2021). Instead, we advance
the pointer one element in the list for every loop iteration, ensuring comparable levels of
precision across all primitives.

32 Chapter 3. Attributing Microarchitectural Leakage within Systems

T = 5 milliseconds
pointer = create_list()

for each sample {
count = 0

start = time()

while (time() - start < T) {
pointer = *pointer
count = count + 1

}

samples[sample] = count

T = 5 milliseconds
for each sample {
count = 0

start = time()
while (time() - start < T) {

count = count + 1

}

samples [sample] = count

T = 5 milliseconds

for each sample {
count = 0

start = time()

while (time() - start < T) {
wait()
count = count + 1

}

samples [sample] = count

(a) Cache Occupancy

() Loop Counting

(c) mwait

L1sTING 3.1: Psuedocode for Measurement Primitives
Psuedocode for the three measurement primitives studied in this chapter.
Each primitive shares a similar structure which measures the number of
times a specific action can be performed — a memory access (Cache Oc-
cupancy), no action (Loop Counting), and waiting using a specialised
instruction (MWAIT). Highlighted lines show the lines that differ between

each primitive.

3.1. Analysis Overview 33

// Total size: 64 bytes -- 1 cache line
struct Element {

struct Element* next; // 8 bytes
struct Element* previous; // 8 bytes
uint8_t padding[42]; // 42 bytes

};

LisTING 3.2: Linked-List Element

3.1.2 Measurement Collection

In the following section, we explain our approach for obtaining traces and presenting the
resulting data.

Recording a Trace. Before we record a trace, we visit example.com to ensure we have
a consistent starting point across all traces. Once the page has fully loaded, we start
executing the target primitive and record its measurements to a buffer. We begin recording
measurements before navigating to the target website to guarantee that the trace captures
the beginning of each page load. After 50 milliseconds, we navigate to the target website.

We record 3,000 samples, capturing each sample 5 milliseconds apart, resulting in a
total collection time of 15 seconds. This duration was chosen to ensure the page was fully
loaded, even when we lower the speed of the processor (Section 3.2.3).

Collecting Traces. Before collecting any traces, we visit each target website, allowing it
to fully load and remain displayed for 30 seconds. This ensures that all traces are gathered
with a consistent browser cache state and better represent real-world scenarios, where a
user is likely revisiting a site.

We collect 100 traces for each of the Alexa Top 10 websites. To avoid bias from the
collection order, we randomise the sequence in which websites are visited. The trace
collection process is automated with Python, which controls the browser using Selenium
while running the measurement primitive in parallel.

Training a Classifier. To identify a website from a recorded trace, we train a random
forest classifier using 80% of the data for training and 20% for testing. For each reported

example.com

34 Chapter 3. Attributing Microarchitectural Leakage within Systems

value, we repeat the training process 20 times and report the mean and standard deviation
of the classifier accuracy.

In this work, we use this classifier as an indicator of system leakage and do not focus
on the precise accuracy value. If the classifier can identify the correct website significantly
better than random chance, we conclude that the system leaks information. Similarly, if
the classifier cannot identify the correct website, we conclude that the system likely does
not leak information.

Measuring Time. We measure time using the rdtscp instruction, which counts reference
cycles. References cycles occur at a fixed rate regardless of the processor’s current fre-
quency (Intel, Vol. 3B §18.17). We convert 5 milliseconds into a fixed number of reference
cycles in advance and wait for that number of cycles to elapse.

175378 _Ezt?la]”cﬁmn:nj 420385 17 [T |m|‘E|||||'|cJJ(|’1n|ﬁ\ L] 161 n-lnmtﬁ”mm—
[77 NANANTION | ONNNWANONN | (TRATENN] (NI WO 7 W] I NN AT T TN A T T ST AT
[T T T TN (| [T TVINTTET 0 TN A 1 A (IUITITT 0 0TI T A0 T T |
140214 youtube.com 402725 youtube.com 160 youtube.com
| [1 A0 RN U 1 N A [T TN O N I
105050 | (IR T 385065 [T 160 T T M NN R T T
[T (NI N e AR [T T | (1| E | LT T TR
google.com google.com google.com
69886 0T T 0 1 367405 X 160 [T T W M T T T
[INNN NN NN YN [[TN T T AT NN
[1IN O N N O A [[T NN T AT T AT
34722 0 5 10 15 349745 0 5 10 15 159 0 5 10 15
seconds seconds seconds
(a) Cache Occupancy () Loop Counting (c) MWAIT
Machine: i7-7700 Machine: i7-7700 Machine: i9-12900K
Accuracy: 96.3+0.8% Accuracy: 93.44+0.8% Accuracy: 47.7+2.2%

FIGURE 3.1: Baseline:
Measurements of the cache occupancy, loop counting, and mwait primitives
on a baseline system visualised as heatmaps.

Heatmaps. Throughout this work, we visualise the collected data using one-dimensional
heatmaps, following the style of Shusterman et al. (2019). We apply a linear colour map
with the minimum and maximum values set to the 2.5% and 97.5% percentiles of the data,
respectively. While this approach removes outliers and makes visual features in each
heatmap easier to identify, it also means that colour scales differ between figures.
Figure 3.1 illustrates baseline heatmaps for each primitive. The horizontal axis rep-
resents samples over time, and the colour at each position corresponds to the number of

3.2. Controlling Channel Contributions 35

iterations of the inner loop. Lighter colours indicate more iterations, while darker colours
indicate fewer iterations. The vertical axis has no meaning beyond making it easier to
view the figure.

Hardware Performance Counters. Hardware performance counters (HPCs) track pro-
cessor performance metrics such as instruction cycles, cache hits, cache misses, branch
mispredictions, and more (Intel, Vol. 3B §20). These counters can be accessed directly
from user space using the rdpmc instruction. In experiments that use HPCs, we record
their values after each 5-millisecond measurement interval.

3.1.3 Experiment Setup

Table 3.1 summarises the hardware and software configurations of the two machines used
in the experiments.

TaBLE 3.1: System Configurations.

CPU Intel i9-12900KF Intel i7-7700

Memory 4x 16 GB DDRS5 4800 MT/s 1x 4 GB DDR3 1333 MT/s
Motherboard MSI Z690-A WIFI ASUS B150M-A D3

Storage 480 GB Western Digital SATA SSD 120 GB Patriot Burst SATA SSD
(01 Ubuntu 22.04.1 LTS Ubuntu 22.04.1 LTS

Kernel Linux 6.2.0 Linux 6.1.38

Browser Chrome 113.0.5672.63 Chromium 109.0.5414.74
Python Python 3.10.12 Python 3.10.12

Selenium Selenium 3.141.0 Selenium 3.141.0

C Compiler GCC11.4.0 GCC 11.5.0

3.2 Controlling Channel Contributions

Before analysing how information flows through microarchitectural channels, we first ask:
Which microarchitectural channels exist, and how can we control them? We focus on four

36 Chapter 3. Attributing Microarchitectural Leakage within Systems

well-known channels: competition with co-resident threads for execution time (Lampson,
1973), interrupt handling (Cook et al., 2022), frequency scaling (Wang et al., 2022, 2023;
Taneja et al., 2023), and eviction from the cache hierarchy (Liu et al., 2015).

In the rest of the section, we describe how we configure the system to control inform-
ation flow through each channel and examine the effects of this configuration on the
cache-occupancy, loop-counting, and mwait primitives. Afterwards, we conclude that we
can completely control leakage measured both the loop-counting and mwait primitives
but can only partially control leakage measured by the cache-occupancy primitive.

3.2.1 Intracore Contention

To control intracore contention, we isolate the primitive from all other programs running
on the machine. Specifically, we designate one core as the ‘measurement’ core and
restrict the primitive execution to this core while forcing all other processes to run
on the remaining cores. We achieve this isolation using the Linux kernel parameter
isolcpus, which prevents the kernel from automatically scheduling any threads on the
specified core. We then use the taskset utility to explicitly bind the primitive to that core
during execution. Although disabling hyperthreading is not strictly necessary, owing to
isolcpus, we disable it to simplify configuration and verification by ensuring that each
core runs only a single thread.

3.2.2 Interrupt Handling

Isolating cores with isolcpus also shifts most interrupt handling to non-isolated cores.
Throughout this work, we may need to manually reassign which cores handle interrupts.
We accomplish this reassignment using the irgbalance utility and by configuring the /
proc/irq/[id]/smp_affinity interface.

This approach controls the effects of movable interrupts; however, some interrupts
remain immovable. To control the effects of immovable interrupts, we prevent them from
occurring altogether.

Tickless. To remove timer interrupts, we enable tickless mode for the kernel. In this
mode, timer interrupts are disabled on cores that have only a single thread scheduled for
execution. To activate tickless mode, we compiled the kernel with the CONFIG_NO_HZ_

3.2. Controlling Channel Contributions 37

FULL compile-time option and add the measurement core to the list of cores allowed to
enter tickless mode using the nohz_full kernel parameter.

Tickless Constraints. To prevent timer interrupts from being scheduled, we impose
the following three constraints on each measurement primitive. First, the primitives
must never execute a system call that triggers a timer interrupt; specifically, they must
avoid any system calls that cause the thread to sleep. Second, the primitives must be
single-threaded. Finally, no other processes should be scheduled on the same core as the
primitive. Violating any of these constraints may cause the system to schedule timer
interrupts.

Tickless Verification. We verify the first constraint through manual code inspection,
ensuring that the main loop of each primitive never executes any operation that could
cause control to return to the kernel. In cases where sleep is required for a specific
duration, we replace the sleep call with a busy loop that uses the rdtscp instruction
to track elapsed time. The second and third constraints are verified using the /sys/
kernel/debug/sched/debug interface, to ensure that only a single thread is running on
the measurement core.

RCU Callback Offloading. Read-Copy-Update (RCU) is a synchronisation mechanism
that allows multiple kernel threads to concurrently read from a shared data structure.
Callbacks can be registered to execute when a thread releases its reference to that structure.
To minimise the latency of the operation releasing the last reference, another core will be
interrupted to handle the callback. To remove these interrupts, we add the measurement
core to the list of cores that are excluded from RCU callback offloading with the rcu_
nocbs kernel parameter.

Verifying Absence of Interrupts. We verify the removal of interrupts by monitoring
the /proc/interrupts and /proc/softirqgs interfaces. These interfaces report the
total number of interrupts handled by the kernel since power-on, categorised by interrupt
type and the core that processed them. In addition, we use the CPU_CLK_UNHALTED.
RINGO_TRANS performance counter to track the number of transitions from user to kernel
mode. Together, these tools allow us to determine whether any interrupts occurred during
trace recording.

We find that in the vast majority of experiments (99.52%), no interrupts occur. In
the rare instances where interrupts do occur, they are few and appear uncorrelated with

38 Chapter 3. Attributing Microarchitectural Leakage within Systems

victim activity. Whenever we report results from experiments without interrupts, we
exclude any traces where interrupts were detected.

3.2.3 Frequency Scaling

Modern processors strive to balance frequency, heat dissipation, and power consumption.
A key mechanism for maintaining this balance is dynamic voltage and frequency scaling
(DVEFS), which adjusts the operating frequency and voltage. Recent studies have shown
that frequency scaling can be exploited to leak information (Wang et al., 2022, 2023; Taneja
et al., 2023).

To control leakage through DVEFES, we perform the following procedure. First, we
disable two BIOS features that allow the processor to change its frequency: TurboBoost and
SpeedStep. Afterwards, we configure the operating system to fix the processor frequency
at a level low enough for sustained operation. This is done using the cpufreq-set utility
to set both the minimum and maximum allowed frequencies to the same value — half of the
processor base frequency (1.8 GHz). Finally, we set the power governor to ‘performance’
and write a value of 0 to the /dev/cpu_dma_latency interface to prevent the processor
from entering any low-power states.

Although many of these interfaces are provided on a per-core basis, consumer pro-
cessors typically support only a single frequency domain, meaning the operating system
must select one frequency for all cores. Since the processor frequency is set below its
maximum, overall system performance is reduced. We account for this by ensuring that
the time allotted to record each trace is sufficient for the browser to fully load the webpage
despite the reduced performance.

3.2.4 Cache

To control leakage through the cache, we employ Intel Cache Allocation Technology
(CAT) to partition the last-level cache. Specifically, we assign half of the cache ways
to the measurement core and the other half to the remaining cores. This partitioning
prevents other programs on the machine from evicting memory used by the measurement
core, effectively severing cache eviction as a channel. However, as discussed below, this
approach does not fully close all memory-based channels, and some leakage persists.

3.2. Controlling Channel Contributions 39

google.com google.com google.com
71545 [T] 236256 L T N T T 157 I
[T [] I A0 00 O O A 1 0 0 1
68316 [T I I 236256 157 |
tmall.com tmall.com tmall.com
] A | [N [| (0 A0 R 0 0 0 OO I
65087 101 N]] 236256 (001 10000 A A0 A 157 0 1
W L[]] [OO 0100000 A]
youtube.com youtube.com youtube.com
61858 T ™] 236255 157 - 0000@0@0@0@0@0@0@0@0@0@0O0O0O0O0O]
M i W —— 11117 ————————
I]
58629 0 5 10 15 236255 0 5 10 15 157 0 5 10 15
seconds seconds seconds
(a) Cache Occupancy () Loop Counting (c) MWAIT
Machine: i7-7700 Machine: i7-7700 Machine: 19-12900K
Accuracy: 91.9+2.0% Accuracy: 11.3+£2.6% Accuracy: 10.0+0.0%

FIGURE 3.2: Reduced Leakage:
Measurements of the cache occupancy, loop counting, and mwait primitives
after removing leakage.

3.2.5 Validating Control

Having implemented techniques to control each channel, we measure the effect of this
control on each primitive. We apply all previous control measures and perform website
fingerprinting as described in Section 3.1.1. Figure 3.2 illustrates the results.

Loop counting and mwait. We successfully eliminate all leakage measured by the
loop-counting and mwait primitives. For the loop-counting primitive, the measurements
change only minimally, and the variations do not appear correlated with browser activity.
For the mwait primitive, all recorded samples are identical. This contrasts sharply with
Figure 3.1, where leakage is so great that websites are distinguishable through visual
inspection.

This elimination of leakage indicates that we have complete control over microarchi-
tectural channels leaking information to the loop-counting and mwait primitives.

Cache Occupancy. Unfortunately, we do not have complete control over microarchi-
tectural channels leaking information to the cache-occupancy primitive. Websites still
remain distinguishable through visual inspection, as shown in Figure 3.2a. Moreover,
training a classifier on these traces yields an accuracy of 91.9%.

This result already demonstrates a significant difference between the primitives. Spe-
cifically, that the primitives do not measure the same channels.

40 Chapter 3. Attributing Microarchitectural Leakage within Systems

3.2.6 Remaining Leakage

We suspect that the uncontrolled channel is due to contention in off-core resources
involved in servicing memory accesses. Several studies have shown leakage through
inter-core interconnects (Dai et al., 2022; Paccagnella et al., 2021; Wan et al., 2022), last-
level cache slices (Dai et al., 2022; Paccagnella et al., 2021; Wan et al., 2022), memory
controllers (Wang et al.,, 2014), and DRAM (Pessl et al., 2016).

Experimental Description While fully controlling all these resources is beyond the
scope of this thesis, we conduct the following experiment to reveal whether the leakage
arises from these resources or not. We modify the cache-occupancy primitive so that its
memory fits entirely within the private cache of the measurement core. Specifically, we
reduce the size of the linked list to 28 KB, which is slightly smaller than the size of the L1
data cache.

Results. When training a classifier on recorded traces under this configuration, we
achieve an accuracy of 11.8+2.6%. This is in stark contrast to the 91.9% accuracy when
using a larger linked list, indicating that we have completely controlled the residual leakage.
Since memory accesses under this configuration can be completely served without using
off-core resources, we conclude that the leakage is due to contention in off-core resources.
We leave the task of identifying and controlling these specific resources to future work.

3.3 Verifying Channel Contributions

Having established control over all channels, we now turn to the question: Which channels
leak information?

To address this question, we begin with a system configuration from the previous
section that completely controls leakage. For simplicity of analysis, we use the loop-
counting primitive in this section.

For each channel, we create a system configuration that allows leakage exclusively
through that channel. We create this configuration by applying all control measures from
the previous section, except we omit those corresponding to the chosen channel. We then
perform website fingerprinting on this new system configuration. If the classifier can
successfully distinguish websites, we conclude that the channel leaks information.

3.3. Verifying Channel Contributions 41

Throughout this section, we find that all identified channels exhibit enough leakage to
mount reliable website-fingerprinting attacks with the loop-counting primitive. Surpris-
ingly, this includes the cache channel, despite the fact that the loop-counting primitive
never performs any memory accesses.

3.3.1 Intracore Contention

First, we test whether intracore contention serves as a channel for information leakage.
For this configuration, we omit the control steps described in Section 3.2.1 and manually
relocate all interrupts away from the measurement core.

google.com
236256 T MITT 1T [[T
(I [[] \ \
232242 | I I L]
tmall.com
(RN 1 D 1 M1 1
228228 111 10 | A1 [T |
10 1111 AN 1 [TTTTI |
youtube.com
224214 (O AT T 7T |] [
i ‘ |\ \T |
220200 (EI-]H]D]MS 10 15
seconds

F1GURE 3.3: Intracore Leakage:
Traces recorded on i7-7700 with a configuration that allows leakage from
intracore contention. Accuracy: 47.6+2.9%

Figure 3.3 illustrates the results of website fingerprinting under this configuration.
The classifier achieves an accuracy of 47.64+2.9%. While this is notably lower than the
accuracy obtained with the baseline configuration, it remains significantly higher than
random guessing. We use this result, along with visual inspection of the heatmaps, to
conclude that intracore contention leaks information.

42 Chapter 3. Attributing Microarchitectural Leakage within Systems

3.3.2 Interrupt Handling

Next, we examine whether interrupt handling serves as a channel that leaks information.
For this configuration, we omit the control steps described in Section 3.2.2.

In order to control intracore leakage, we use the isolcpus kernel parameter. However,
this will cause the kernel to move interrupts away from the measurement core. To avoid
falsely concluding that interrupts do not leak information, we manually relocate all
interrupts back to the measurement core.

236084 T [T google'coﬁnu [
T T T T
235700 I [T (I |
tmall.com
1 0 D A Y SO
235316 (L T T TR T T eI
(T TR TT TR TR T T 1
youtube.com
234932] TN N 1 Il IR
WWW‘IM\HM\‘l | ﬂﬂ“\H [
234548 0 5 10 15
seconds

FIGURE 3.4: Interrupt Leakage:
Traces recorded on i7-7700 with a configuration that allows leakage from
interrupts. Accuracy: 78.6£1.7%

When we perform the experiment with this configuration, the classifier achieves an
accuracy of 78.6+1.7%. Figure 3.4 illustrates a heatmap of the resulting traces. Similar to
the previous section, we use the classifier accuracy in combination with visual inspection
to conclude that interrupt handling leaks information.

Per-device Interrupt Handling. The default configuration on our system distributes
interrupt handling across all of the cores. For example, the operating system may assign
one core to handle all interrupt requests from the network interface, while another core
handles all interrupts from the sound interface. This raises a natural question: Do different
interrupts leak different information?

3.3. Verifying Channel Contributions 43

Experiment design. We begin with a system configuration that completely removes
leakage using the steps described in the previous section. Afterwards, we move all
interrupts from a specific device to the measurement core while relocating all other
interrupts to a different arbitrarily chosen core. We then perform website fingerprinting
as outlined in Section 3.1.1. This experiment is repeated for each device in the system:
the USB controller (USB), NVMe storage (Storage), networking, graphics, sound, and the
system management engine (Management).

TABLE 3.2: Interrupt Leakage (By device):
Accuracy of the loop counting primitive on our i7-7700 machine when we
deliver interrupts from a specific device to the measurement core.

Interrupt Accuracy

Graphics 61.56 + 3.01%
Management 11.24 + 1.70%
Networking ~ 56.20 + 2.25%

Sound 22.36 + 2.34%
Storage 54.92 + 2.09%
USB 10.60 + 2.08%

Results. Table 3.2 shows the results of this experiment. The classifier accuracy varies
significantly depending on which device interrupts are delivered to the measurement
core. For example, interrupts from the internal graphics card yield the highest accuracy at
61.6%, while interrupts from the management engine produce the second-lowest accuracy
at 11.2%. The lowest accuracy is seen with USB interrupts; however, this outcome is
likely an artefact of our experimental setup since the device under test is exclusively used
remotely and has no USB peripherals attached. Using the results of this experiment, we
conclude that different interrupts do leak different information.

3.3.3 Frequency Scaling

Next, we examine whether frequency changes serve as a channel to leak information. For
this configuration, we omit the control steps described in Section 3.2.3.

44 Chapter 3. Attributing Microarchitectural Leakage within Systems

google.com
548349 T I T L L I
I T [T 1]
539137 11 [N [T T R T
tmall.com
(TN T T T T AT T T 1
529924 AT AT 1 1
(IR T T T [T |
youtube.com
520712 (NN T T T LM
(IR 17T | H| H\‘\‘I‘ AT
511499 0 5 10 15

seconds

F1GURE 3.5: Frequency Scaling Leakage:
Traces recorded on i7-7700 with a configuration that allows leakage from
frequency changes. Accuracy: 90.8+1.5%

Results. Figure 3.5 illustrates heatmaps from this experiment. When we train a classifier
on traces recorded under this configuration, it achieves an accuracy of 90.8+1.5%. Again,
we use these results to conclude that frequency scaling due to DVFS leaks information.

3.3.4 Cache

Finally, we investigate the cache as a channel for leaking information. For this final
configuration, we omit the steps from Section 3.2.4.

Results. As with all other configurations, the traces illustrated in Figure 3.6 can be
distinguished by eye. Furthermore, the classifier achieves an accuracy of 94.3+1.2%. At
first glance, this result is not too surprising due to existence of many works that explicitly
use the cache to leak information; however, the loop-counting primitive that we use to
collect the measurements does not perform any memory accesses.

This raises a natural question: How does loop counting measure cache leakage? The
remainder of this section addresses this question.

Measuring Cache Misses. We begin by instrumenting the loop-counting primitive to
record the number of cache misses in the L1I (instruction) and L1D (data) caches. We

3.3. Verifying Channel Contributions 45

google.com

[0 IR W]
236236 M MM T T | |

tmall.com

236216 (T THOIT T 1T 1T T 117

(T T T T T T T |
youtube.com
236196 1 1 11 T I \
Il]lﬂ]]ﬂ]l]]]]llﬂl]llll[ﬂ”\ NI % —
236176 0 5 10 15
seconds

F1GURE 3.6: Cache Leakage:
Traces recorded on i7-7700 with a configuration that allows leakage from
cache evictions. Accuracy: 94.3+1.2%

achieve this by programming the hardware performance counters to track the number of
FRONTEND_RETIRED.L1I_MISS_PS and MEM_LOAD_RETIRED.L1_MISS_PS events during
each measurement. When we perform the experiment again, we observe no data cache
misses, but we do observe instruction cache misses.

Root Cause Analysis. We hypothesise that the cause of these instruction cache misses
lies in the architecture of the inclusive last-level cache (LLC) of the i7-7700 processor.
In an inclusive cache hierarchy, when a cache line is evicted from the LLC, it is also
invalidated from the private caches (L1I, L1D, and L2) of each core. Since the LLC does
not differentiate between data and instructions, extensive data accesses by the victim
may inadvertently evict the loop-counting primitive’s code from the cache. When such
eviction occurs, the processor loses immediate access to those instructions and stalls while
it fetches them from system memory. This stall reduces the number of loop iterations
completed during the measurement interval, creating a signal that is correlated with the
victim’s memory activity.

Non-Inclusive Caches. To test this hypothesis, we repeat the experiment with a i9-
12900KF processor, which features a non-inclusive LLC. In such architectures, evicting a
cache line from the LLC does not cause it to be evicted from the private caches of each

46 Chapter 3. Attributing Microarchitectural Leakage within Systems

core.

When we conduct the experiment, we observe no L1I cache misses, and the loop-
counting primitive loses all sensitivity to cache leakage. These results support our hy-
pothesis: the loop-counting primitive is sensitive to cache leakage on inclusive-cache
systems because its instructions are being evicted from the instruction cache as a result
of victim memory activity.

3.4 Measuring Channel Contributions

In the previous sections, we demonstrate our ability to control leakage (Section 3.2) and
show that all channels leak information (Section 3.3). This section measures the relative
contribution of each channel to the total leakage measured by each primitive.

3.4.1 Methodology

We perform website fingerprinting while simultaneously recording various system and
processor performance events related to each channel. We then compute the Pearson
correlation coefficient between the number of iterations and the collected performance
events, using this coefficient as an indicator of each channel’s contribution to the total
leakage measured by each primitive. We report the average and standard deviation of the
coeflicient across all 1,000 traces.

We modify the inner loop of each primitive to track various processor events. For each
5-millisecond sample, we record the number of loop iterations, the number of interrupts
delivered to the measurement core, the total time spent handling interrupts, the processor
frequency, and the number of L1I and L3 cache misses attributed to the primitive. All
these measurements are performed on a baseline system, meaning we do not apply any of
the controls described in Section 3.2.

Measuring Interrupts. As in previous sections, we measure the number of interrupts
using the /proc/interrupts and /proc/softirgs interface. Sampling occurs every 5
milliseconds, and we compute the difference between successive samples.

Measuring Interrupt Time. While the total number of interrupts can be measured
easily, there are no readily available interfaces to capture the total interrupt handling

3.4. Measuring Channel Contributions 47

time with fine granularity. To address this, we adopt the same technique used by Cook
et al. (2022), which detects gaps in execution and attributes them to interrupt handling.
Specifically, we modify the inner loop to repeatedly access the RDTSCP instruction. If the
difference between successive measurements exceeds 500 nanoseconds, the interval is
recorded as an execution gap, and its duration is added to the total interrupt handling
time.

Although this thesis attributes all execution gaps to interrupt handling time, our
currently unpublished follow-up work reveals that many of these gaps are caused by other
factors, such as the processor pausing execution to adjust its frequency.

Measuring Frequency. We measure the CPU_CLK_UNHALTED.THREAD_ANY and CPU_
CLK_UNHALTED.REF_TSC performance events. These events serve functions similar to the
APERF and MPERF model-specific registers but can be accessed directly from user space.
The ratio between these two events provides the average processor frequency over a given
period (Intel, Vol. 3B §14.2).

Measuring Cache Activity. We measure data and instruction cache activity separately
by monitoring the CYCLE_ACTIVITY_CYCLES_L3_MISS and FRONTEND_RETIRED.L1I_
MISS performance events. The former counts the number of cycles during which load
instructions are stalled due to L3 cache misses, while the latter counts the number of
instructions that miss in the L1I cache.

3.4.2 Contributions of Channels

Here, we report the correlation between each channel and the iteration count for each
primitive. Since the operating system assigns specific cores to handle interrupts from
specific devices, the results may vary depending on the devices connected to the system
and the core used for measurements. To account for this, we perform the experiments
under two system configurations: a baseline configuration where we arbitrary selected
the final core on the system as the measurement core and a modified configuration where
all interrupts are redirected to the measurement core.

Table 3.3 presents the results for all three primitives under these two configurations.
We restrict our reporting to one column of the table at a time — the column corresponding
to the primitive of interest in each of the following paragraphs.

48 Chapter 3. Attributing Microarchitectural Leakage within Systems

TaBLE 3.3: Correlating Channels and Measurement Primitives:
Correlation between iterations and number of events on both machines.
Baseline refers to the default interrupt configuration. Interrupts refers to
the configuration where all interrupts are delivered to the measurement

core.
Cache occupancy Loop counting mwait

Machine 19-12900KF i7-7700 19-12900KF i7-7700 19-12900KF

Interrupt Count 0.04£0.01 —0.03%£0.02 —0.05+0.03 0.03+0.05 0.11+0.04
.E Interrupt Time —-0.20+£0.07 —0.76+0.03 —-0.27+£0.07 —0.40+0.05 0.79+0.08
g Frequency 0.70+0.04 0.50+0.11 0.771+0.09 0.82+0.04 0.4840.19
& Lu Cache —0.15+0.03 0.08+0.05 0.0410.02 0.06+0.04 —0.06+0.17

L3 Cache —-0.99+0.00 —0.931+0.04 —0.10+0.04 —0.44+0.06 —0.09+0.04
@ Interrupt Count —0.25+0.05 —0.17+0.05 —0.23£0.05 —0.19+0.04 0.55+0.15
g Interrupt Time —0.36+0.06 —0.76+0.02 —0.35+0.07 —0.44+0.06 0.441+0.13
& Frequency 0.7040.03 0.49+0.08 0.78+0.08 0.81+0.04 0.22+0.18
-g L1I Cache —0.22+£0.05 —0.28+0.04 —0.20+0.05 —0.224+0.05 0.40+0.12
=~ L3 Cache —0.98+0.00 —0.9310.03 —0.22+0.06 —0.45+0.05 0.151+0.08

Cache occupancy. For the cache-occupancy primitive, L3 cache misses shows the highest
correlation with the number of iterations. This is irrespective of whether the processor
features an inclusive (i7-7700) or non-inclusive (i9-12900KF) cache or whether interrupts
are moved to the measurement core or not.

Loop counting. For the loop-counting primitive, frequency shows the highest correlation
with the number of iterations. Interestingly, interrupt count and interrupt time exhibit
significantly different correlations to the number of iterations. Our unpublished follow-up
work investigates this result further.

mwait. Finally, we report the results for the mwait primitive. As this primitive relies
on instructions supported only by newer architectures, we limit our analysis to the i9-
12900KF processor. Under the baseline configuration, interrupt time shows the highest
correlation. When interrupts are redirected to the measurement core, interrupt count
shows the highest correlation.

Comparing to Cook et al (2022). Cook et al. (2022) suggest that the primary source of
leakage for the cache-occupancy and loop-counting primitives is interrupt-related activity.
In contrast, our findings indicate that the main contributors are cache behaviour and

3.5. Conclusion 49

frequency scaling, respectively. This discrepancy likely arises from differences in how
channel contribution is measured.

Using machine learning accuracy as a metric can be misleading, as accuracy may
improve even when information is removed from the signal. Consider loop-counting
measurements on a system with a baseline configuration (Figure 3.1b) and a modified
configuration that only allows leakage through the cache channel (Figure 3.6). Under the
first configuration, we trained a classifier with an accuracy of 93.4 + 0.8%. Under the
second configuration, we trained a classifier with a higher accuracy (94.3 + 1.2%) despite
the removal of channels that contain information.

We hypothesise that this increase in accuracy occurs because leakage from different
channels may destructively interfere with each other, thereby reducing overall signal
quality. In contrast, using Pearson correlation as a measure of channel contribution
accounts for such interference, leading to different insights than those obtained from
classifier-based analysis alone.

3.5 Conclusion

Throughout this chapter, we describe how to control leakage through microarchitectural
channels and how to use this control to uncover insights into how leakage propag-
ates throughout a system. We use this approach to analyse recent microarchitectural
website-fingerprinting attacks and address conflicting explanations surrounding the cache-
occupancy attack.

Our findings show that while the cache emerges as the dominant channel for the
cache-occupancy attack, other channels also contribute significantly. We observe similar
patterns in our analysis of the loop-counting and mwait primitives too.

Our findings highlight the importance of considering multiple channels when attempt-
ing to mitigate the risk of microarchitectural attacks. Countermeasures that only address
the most prominent channel may not be sufficient to eliminate the threat of attack. More
concerning is the impracticality of isolating all potential channels, particularly those
involving the memory hierarchy, suggesting that fully mitigating cache-occupancy or
loop-counting attacks may not be feasible.

Fortunately, sensitivity to multiple channels seems limited to coarse-grained attacks
such as the website finger-printing attacks analysed in this chapter. These attacks seem to

50 Chapter 3. Attributing Microarchitectural Leakage within Systems

have limited ability to extract sensitive information, reducing the urgency for immediate
and effective countermeasures.

The following chapters explore significantly more powerful adversaries capable of
conducting higher-bandwidth measurements and examine the implications of these cap-
abilities on the security of modern web browsers.

51

Chapter 4

Mounting a High-Capacity
Pixel-Stealing Attack

When web resources interact, the browser enforces a security policy to determine whether
the interaction should be allowed. The most common policy is the same-origin policy,
which restricts interactions between resources served from different origins.

However, web browsers do permit certain forms of cross-origin interaction. One such
example is the cross-origin application of SVG filters — small functions that alter the visual
appearance of web content and enable effects, such as blurring, that are otherwise difficult
to achieve using standard HTML and CSS alone. Web browsers allow filters to be applied
to cross-origin resources to create cohesive visual effects on webpages. This is assumed
to be safe because the browser restricts access to the output of the filter.

Unfortunately, unintended side effects from filter application may be observable to
malicious websites. For example, previous studies have shown that filter execution time
is data dependent, enabling attackers to exploit these timing variations to launch pixel-
stealing attacks (Stone, 2013; Andrysco et al., 2015; Kotcher et al., 2013).

Figure 4.1 illustrates the general structure of such filter-based pixel-stealing attacks.
In these attacks, the attacker lures a user to a malicious website that embeds sensitive
content, such as a third-party site within an iframe, and then applies a filter to the
displayed content. The content influences the execution time of the filter which, in turn,
influences the page rendering time. While the attacker cannot directly measure the page
rendering time, they can induce a large delay to cause the browser to miss the deadline to
render the next frame — an event the attacker can detect.

52 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

[0oo C —

Attacker Website

Victim Content

Reposition | | €—

Observe Rendering

A

FIGURE 4.1: Overview of a Pixel-Stealing Attack:
An adversary tricks a user into visiting their malicious website (Attacker
Website). The Attacker Website embeds a website that displays sensitive
user information (Victim Content) then applies a vulnerable SVG filter to
the content (Attacker Filter). The adversary observes how the filter impacts
the rendering of the browser to extract information and repositions the
victim content to extract the desired subset of the victim content.

A fundamental limitation of these pixel-stealing attacks is that they extract informa-
tion by causing the browser to miss the deadline for rendering a frame. Considering that
browsers render frames at a fixed rate, typically matching the refresh rate of the display,
the data rate of such attacks is inherently limited. This limitation is further compounded
by the fact that attacks usually extract only a single binary value per frame, which typic-
ally restricts the maximum data rate to no more than 60 bits per second. Furthermore,
browser vendors have acknowledged the risk of pixel-stealing attacks and implemented
countermeasures to eliminate observable data-dependent timing differences in filter exe-
cution (Mozilla Bug Tracker, 2013; Chromium Project, 2013, 2016a, 2017). Recent studies
have shown that frequency scaling can be exploited to mount pixel-stealing attacks despite
these mitigations (Taneja et al., 2023; Wang et al., 2023), but these attacks suffer from even
lower leakage rates. This raises the question: Are high-capacity pixel-stealing attacks on
modern browsers feasible?

4.1. Overcoming Cross-Origin Isolation 53

This chapter answers the question in the affirmative by presenting a high-capacity
pixel-stealing attack capable of leaking several hundred bits per second. The attack
achieves this by employing a different mechanism to extract information from the browser:
it uses the Prime+Probe technique to monitor content-dependent memory accesses per-
formed by the feComponentTransfer SVG filter. Since the filter performs memory access
for each pixel, the increased number of measurable events raises the data rate well beyond
the 60-bit-per-second limit.

Section 4.1 describes a generic technique to bypass cross-origin isolation, a counter-
measure designed to prevent malicious websites from exploiting microarchitectural event
measurements. Sections 4.2 and 4.3 introduce Pixel Thief, a cache-based pixel-stealing
attack that exploits data-dependent memory accesses in the feComponentTransfer filter.
Finally, Sections 4.4 and 4.5 demonstrate how Pixel Thief can be used as a primitive for
efficient text-stealing and history-sniffing attacks, respectively.

4.1 Overcoming Cross-Origin Isolation

The first major challenge for pixel-stealing attacks on modern browsers is cross-
origin isolation. To access high-resolution timers directly or to create them using
SharedArrayBuffer, a website must control cross-origin isolation with the COEP/COOP
headers. If the website embeds or is embedded within a cross-origin site, both sites must
use these headers and must include each other on their embedding allow-list.

While it may be possible to exploit incorrectly configured websites, the attacker is
limited to targetting only these misconfigured websites. To allow the attack to target the
vast majority of sites, we focus on scenarios where these headers are not used.

In such scenarios, the browser prevents access to high-resolution timers, which limits
the attacker’s ability to mount high-capacity attacks. One potential solution is to build
on prior work by employing advanced techniques that leverage transient execution to
enable side-channel attacks with high-temporal accuracy even without a source of high-
resolution timing (Katzman et al., 2023; Kaplan, 2023). However, before adopting these
complex methods, we ask the question: Does the mutual exclusion between embedding
websites and accessing high-resolution timers actually exist?

The rest of this section demonstrates that the answer is no, provided the attacker
is willing to accept stricter constraints on their attack. Specifically, the adversary must

54 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

coerce the victim into interacting with the malicious website at least once. This shifts the
adversarial model from those used in previous pixel-stealing works to the slightly stricter
models used in clickjacking attacks (Huang et al., 2012).

Bypassing cross-origin isolation. We use this interaction to open a second page. The
first page sends COEP/COOP headers to access high-resolution timers, but cannot embed
cross-origin content. The second page is reversed, it cannot access high-resolution timers
because it does send COEP/COOP headers, but it can embed cross-origin content.

The attack is split between these two pages: any component requiring high-resolution
timers runs on the first page, while any part interacting with cross-origin content runs
on the second page. The two pages cannot communicate directly owing to cross-origin
isolation. However, both can send messages to a server via WebSockets, which can relay
messages between the two pages.

Figure 4.2 illustrates an overview of this approach. The server serves two pages to the
victim: the first page disables COEP/COOP and embeds the victim page (blue webpage on
the left), while the second page enables COEP/COOP and performs the cache attack with
high-resolution timers (orange webpage on the right). (#1) The server instructs the first
page to manipulate the victim page to leak data. (#2) The data leaks through the cache
from the victim to the second page. (#3) The second page recovers the leaked data using
the high resolution timers and sends it back to the server.

Same-Origin Content. When the targetting same-origin content, such as the history-
sniffing attack described in Section 4.5, the two-page architecture is unnecessary because
there is no cross-origin content that the browser restrict access to. We use the single-page
architecture for attacks that leak same-origin content and the two-page architecture for
those that leak cross-origin content.

4.2 Leaking Pixels

This section describes the pixel-stealing attack that serves as the foundation for the
other attacks presented in this chapter. The pixel-stealing attack reveals sensitive data
displayed in rendered webpages by exploiting data-dependent memory accesses in filters.
Subsequent attacks in this chapter encode secret information into parts of the rendered
webpage and then use this attack to recover it.

4.2. Leaking Pixels

55

(#30\&

Server N~

COEP/COOP
DISABLED

COEP/COOP
ENABLED

#1 40

FIGURE 4.2: Bypassing Cross-Origin Isolation:
The server split the attack into two pages that can be delivered to the user
under different security models. The first page embeds sensitive content
(blue/left) while the second mounts the cache attack (orange/right). (#1) The
server instructs the first page to leak information (#2) which is recovered
via a cache attack and then (#3) transmitted back to the server.

Figure 4.3 illustrates an overview of the attack. The attacker embeds the victim image
into their page (#1) and uses CSS to isolate and scale specific pixels (#2). Then, the attacker
prepends their own image above these pixels (#3), so that when the filter is applied, it
generates a predetermined sequence of memory accesses. When the browser renders the
page, the filter processes both images using each pixel value as an offset into a lookup
table (#4). In parallel, the attacker performs a cache attack to monitor memory accesses
to this table over time (#5). Finally, the attacker analyses the recorded memory accesses
to identify the predetermined sequence corresponding to their own image. Subsequent
memory accesses are attributed to the victim’s image and can be recovered then combined
with previously obtained pixels to reconstruct the entire victim image (#6).

56 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

o Attach Preamble
- § Monitor Cache Activity
Victim Content % Filtﬂble [Preamble ‘ Victim Content
B] 01010110100110000

]

Reassemble Image

P -

Filter Combined Image

JUSIUOD WHOIA

Scale Image

FIGURE 4.3: Recovering Pixel Data:
(#1) Embed victim content. (#2) Isolate pixels in victim content. (#3) Embed
attacker content. (#4) Apply filter to both images. (#5) Record memory
accesses. (#6) Find memory accesses correlating to attacker content then
recover victim content.

While the attack works in both Chrome and Firefox, Firefox’s implementation of the
relevant filter is significantly easier to explain; therefore, the remainder of this section
focuses on Firefox. It begins with a description of the vulnerable SVG filter and then
discusses GPU implementations of SVG filters, the challenges these pose for the attacker,
and how the attacker can force Firefox to use the vulnerable CPU implementations instead.
Finally, the section concludes with a discussion on measurement frequency.

4.2.1 The feComponentTransfer Filter

The feComponentTransfer SVG filter element enables designers to remap the colours
of their webpages. It can be used to create various recolouring effects, such as sepia

4.2. Leaking Pixels 57

or grayscale. The filter processes each pixel of the input image individually: first, it
separates the pixel into its red, green, and blue components; then, it applies designer-
defined functions to each component’s value independently; finally, it recombines the
components to produce the pixel colour in the output image. Listing 4.1 (Lines 2-6)
provides an example of how such a filter is defined.

<filter id="filter_id">
<feComponentTransfer>
<feFuncR type="discrete" tableValues="0 1"></feFuncR>
<feFuncG type="discrete" tableValues="1 0"></feFuncG>
<feFuncB type="discrete" tableValues="0.3 0.6 0.9"></feFuncB>
</feComponentTransfer>
<feGaussianBlur stdDeviation="0" />
</filter>

LisTING 4.1: Malicious filter definition:
A filter that executes the vulenrable feComponentTransfer filter followed
by feGaussianBlur to force execution of the filter onto the CPU.

Implementation. The feComponentTransfer specification allows several ways to
define the colour mapping functions, including identity maps, linear maps, gamma maps,
interpolated tables, and discrete tables (MDN Contributors, a). Regardless of the chosen
method to define the colour mapping functions, Firefox implements the function using a
256-entry lookup table that is populated during a precomputation phase.

Listing 4.2 shows a simplified version of Firefox’s feComponentTransfer implementa-
tion in c-like pseudocode. Lines 1-4 define the implementation function and its parameters.
The input and output parameters represent the filter’s input and output images, each
composed of interleaved 8-bit red, green, and blue values. The final parameter, tables,
contains the precomputed lookup tables generated from the colour mapping functions
defined for the filter. Line 6 iterates over every pixel in both the input and output images,
while Line 7 iterates over each colour component of the current pixel. Finally, Line 8
applies the filter by performing a lookup in the corresponding table.

58 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

void TransferComponents(
uint8_t input[N],
uint8_t output[N],
uint8_t tables[3] [256]
) {
for (uint32_t 1 = 0; 1 < N; i += 3) {
for (uint32_t ¢ = 0; ¢ < 3; c++) {
output[i + c] = tables[c] [input[i + c]];

}
}
b

LisTING 4.2: Firefox’s feComponentTransfer implementation.

Memory access patterns. Here, we analyse the cache access patterns of the
feComponentTransfer implementation. Consider an image with two pixels: the first is
black (0,0, 0), and the second is white (255, 255, 255). As before, Lines 6 and 7 of List-
ing 4.2 iterate over each component of each pixel, with Line 8 performing table lookups.
A side effect of these lookups is that the accessed table entries are loaded into the CPU
cache hierarchy. Specifically, applying the filter to the black pixel loads the first entries of
each table into the cache, while processing the white pixel loads the last entries of each
table. Consequently, an attacker who can distinguish between memory accesses to the
first entries versus the last can determine whether the pixel is black or white.

4.2.2 Executing feComponentTransfer on the CPU

To improve rendering performance, Firefox version 92.0 and later attempts to offload
image rendering to the GPU. This GPU-based rendering creates a challenge for adversaries
seeking to exploit vulnerabilities in the CPU implementations of filter elements, as these
vulnerable implementations are bypassed. We describe how to overcome this issue by
forcing Firefox to execute filter elements on the CPU instead.

4.2. Leaking Pixels 59

TaBLE 4.1: Filter Execution Location:
List of filter elements. Filter elements marked v have a GPU implementation
and elements marked X do not. felmage and feMerge use a separate system
that is out of scope for this work and are marked —.

Filter Element | GPU Support
feBlend
feColorMatrix
feComponentTransfer
feComposite
feConvolveMatrix
feDiffuseLighting
feDisplacementMap
feFlood
feGaussianBlur
feImage

feMerge
feMorphology
feOffset
feSpecularLighting
feTile

feTurbulence

XA X XX NSNS

> X X g X |

Filter Elements without GPU Implementations. Although Firefox offers GPU-based
implementations for many filter elements, some filter elements are still supported only
via CPU-based implementations; see Table 4.1 for a complete list. One example is
feGaussianBlur, which applies a Gaussian blur (Waltz and Miller, 1998) to an image.
However, none of these CPU-only filter elements exhibit data-dependent memory access
patterns capable of leaking image data into the cache.

Forcing CPU Computation. Unable to construct an attack using filters with only CPU-
based implementations, we explore methods to force Firefox to fall back to executing
feComponentTransfer on the CPU. To this end, we examine Firefox’s behaviour when

60 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

combining filter elements, particularly mixes of CPU- and GPU-based filters.

We find that when feComponentTransfer is combined with feGaussianBlur, both
filters execute on the CPU. ' Moreover, we find that this pattern holds consistently: if the
last filter in the stack is CPU-based, the entire filter runs on the CPU, regardless of how
many GPU-based filters are included. *

Our Filter. To exploit this behaviour, we use the filter shown in Listing 4.1. It consists
of an feComponentTransfer filter element (Lines 2-6), whose output is fed into an
feGaussianBlur filter element (Line 7). Since Firefox lacks a GPU implementation for
feGaussianBlur, it falls back to the CPU implementation for that filter. Consequently,
feComponentTransfer is also executed using its CPU-based implementation as shown
in Listing 4.1. The choice of feGaussianBlur is arbitrary — any other CPU-only filter
could be used to force filter execution on the CPU.

Chrome. Chrome exhibits behaviour similar to Firefox, preferring to execute
feComponentTransfer on the GPU. While we could not identify a method to force
Chrome to run feComponentTransfer on the CPU, it does maintain an extensive GPU
blocklist that disables various GPU acceleration features on specific hardware config-
urations. These configurations include devices with outdated drivers, systems running
Windows Vista or earlier, Linux machines with third-party drivers, and MacOS devices
without a GPU on the allowlist (Chromium Project, 2023). Consequently, an attacker
would be limited to targeting victims using devices in one of these restricted configur-
ations. In our experiments, we simulate this scenario by launching Chrome with the
--disable-gpu flag, which disables GPU support entirely.

Signal Amplification. Cache attacks have a limited measurement frequency, which
restricts their ability to distinguish between rapidly occurring events (Allan et al., 2016;
Purnal et al., 2021). Our goal is to recover an image by measuring filter memory accesses
with a cache attack. However, the filter operates too quickly — it performs memory
accesses every few CPU cycles, while a typical cache attack requires hundereds or even

'We note that if the filters are combined in the reverse order feComponentTransfer is executed on
the GPU.

2We note that explicit linking of filter-elements using in attributes interferes with this behaviour and
prevents GPU-based filters from executing on the CPU.

4.3. Recovering Pixels 61

thousands of cycles per measurement (Allan et al., 2016; Yarom and Falkner, 2014; Liu
et al,, 2015; Purnal et al., 2021).

Previous works have explored methods to reduce the execution speed of the transmit-
ter (Allan et al., 2016; Aldaya and Brumley, 2022; Gullasch et al., 2011; van Bulck et al.,
2017; Moghimi et al., 2017), but these techniques rely on features unavailable to JavaScript,
so they cannot be used in the attack. Instead, we build on prior research (Andrysco et al.,
2015; Kotcher et al., 2013; Stone, 2013) that stretches the image to create copies of each
pixel forcing the filter to perform repeated memory accesses. Since Firefox breaks the
screen into 256 x 256 px tiles, we stretch each pixel horizontally by 256 times and vertically
by an amount that depends on the number of pixels recovered simultaneously.

4.3 Recovering Pixels

In the previous section, we construct the transmitter side of our pixel-stealing attack. This
section shifts focus to the receiver side.

First, we explain how to prepare for mounting a cache attack and then describe the
specific cache attack we employ. Our goal is to build a fast attack that enables a high
data transfer rate. To achieve this goal, we use Prime+Probe (Osvik et al., 2006; Liu et al.,
2015; Percival, 2005). Then we explain how we synchronise the transmitter and receiver,
followed by an evaluation of the pixel recovery rate, and concluding with a comparison
to existing works.

4.3.1 Detecting Transmitter Communications

Unlike previous filter-based attacks (Andrysco et al., 2015; Kotcher et al., 2013; Stone,
2013), our approach measures leakage concurrently with filter execution. However, the
attacker cannot immediately determine whether a given cache measurement corresponds
to memory activity of a filter or of some unrelated process running on the machine.

In this section, we explain how to distinguish cache measurements that represent
transmitter communications from noise generated by other processes. We then show
how this ability to detect transmitter activity enables the establishment of a reliable
communication channel. We begin by assuming the attacker knows which cache sets to
monitor and subsequently describe how these sets can be identified.

62 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

Adding the preamble. To detect the start of a transmission, we employ a standard
communication technique by introducing a packet preamble. The preamble serves two
purposes: first, it enables the receiver to identify the beginning of the transmission; second
because its content is known, it allows the receiver to synchronise its clock rate (which
is based on a free-running counting thread) to the rate of the sender. Recall that the
signal is encoded as cache activity by applying an attacker-controlled filter over a page
containing victim content. We insert the preamble by prepending a known image to the
page, positioned just before the victim content so that the filter processes the preamble
first, followed by the sensitive information.

<div style="filter: url(#filter_id) ;">

<div>
<I-- semsitive content -->
</div>
</div>

LisTING 4.3: Applying a preamble:
The filter is applied to page elements in their rendering order. We add an
image before the sensitive content so that when the filter is applied to both,
it first produces a known memory access pattern that can be detected.

Listing 4.3 illustrates how the preamble is added to the attacker webpage. Line 1
applies the filter to both the preamble and the sensitive content. Line 2 displays the
preamble image on the screen, while Lines 3-5 display the sensitive content. Because
the filter processes the image first horizontally, then vertically, it will first operate on the
preamble before processing the sensitive content.

Detecting the preamble. With the transmitter set to send a preamble, we now focus
on detecting it at the receiver. Because the exact rate of the receiver’s counting thread
is unknown to the attacker and may vary over time, it is not possible to directly search
the side-channel trace for the preamble, as the signal may be stretched in time by an
unknown factor. Instead, we search for the preamble across multiple potential stretching
factors. To speed up this process, both the preamble and the trace are first processed using

4.3. Recovering Pixels 63

run-length encoding. In this representation, time stretching corresponds to multiplying
by a constant factor. Once the preamble is detected, the attacker gains knowledge of both
the frame start time and the correct data rate for sampling the transmitted data.

We implement the detector as follows: the input signal first passes through a low-pass
filter to remove high-frequency noise. Afterwards, the filtered samples are compared
against a threshold to classify them as cache hits or cache misses. The resulting trace
is then run-length encoded, and finally, a substring search is performed to locate the
preamble. Figure 4.4 illustrates an example of cache activity measured by our attack, both
before and after filtering the signal.

1,000
9 800 |- i
= 600 :
9]
—§ 400 | 8
200
O | | | | |
0 20 40 60 80 100 120
Approximate Time (1s)
(A) Raw Data

fay
Z
g | |

0 20 40 60 80 100 120

Approximate Time (1s)

(B) After Filtering

FIGURE 4.4: Preamble Memory Access Patterns:
Memory access patterns of an SVG filter when rendering a preamble image
that encodes the sequence 101011101010001. Recorded using Prime+Probe
then filtered with a low-pass filter and thresholded with a value of 300.

64 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

Packet Payload. Our attack can be configured to leak varying numbers of pixels sim-
ultaneously, depending on the trade-off chosen between speed and error rate. Each
filter invocation effectively transmits a ‘packet’ of side-channel data, beginning with the
preamble followed by the sensitive payload.

Identifying The Target Set. Until now, we have assumed that the attacker already
knows which cache set is used by the filter processing code and only needs to detect when
data transmission occurs. To identify the cache set used by the filter, the attacker first
constructs an eviction set for each cache set using the technique described by Vila et al.
(2019).

After constructing all eviction sets, the attacker repeatedly applies the filter to the
preamble. Then, for each eviction set, the attacker uses Prime+Probe with the eviction set
to measure memory activity on the system. The attacker measures a trace long enough to
include one invocation of the filter then searches the recorded trace for the preamble. Upon
detecting the preamble, the attacker records the corresponding eviction set, eliminating
the need for this calibration in future measurements. If the preamble is not detected, the
attacker moves on to the next eviction set.

4.3.2 Evaluation

In the previous section, we describe the final steps for detecting cache leakage from
feComponentTransfer. In this section, we evaluate how varying the payload size, the
time needed to identify the target cache set, and the presence of noise affect the leakage
rate and accuracy of the attack.

Throughout this section, we mount our pixel-stealing attack on the pixel-art Firefox
logo shown in Figure 4.5 (first image on the left). We start by evaluating the speed and
accuracy trade-off when selecting payload size. Then we evaluate the capability of the
attack to find the signal in the cache. Finally, we evaluate the attack under more realistic
conditions, including an additional concurrent workload.

We use Prime+Probe to measure the final entry of the feComponentTransfer filter
table, corresponding to indexes 192-256, and ignore accesses to any other indexes. For
each pixel, if access to this cache line is observed, we assume that index 256 of the table
was accessed; otherwise, we assume index 0 was accessed. Under these assumptions,

4.3. Recovering Pixels 65

FIGURE 4.5: Recovered Images:
Pixel-art Firefox logos were recovered using our pixel-stealing attack. From
left to right: original image, ideal leakage, and actual leakage with payloads
of 1, 4, 8, and 32 pixels.

Figure 4.5 (second image from the left) illustrates what the recovered image would look
like if there were no errors in the cache channel.

Varying Payload Size

First, we conduct an experiment to explore the trade-off between speed and accuracy
when selecting the payload size. We measure the time required to recover the entire image
after the attack setup has been completed (i.e., setup times are excluded). We recover
images with packet sizes of 1, 4, 8, and 32 pixels. For each packet size, we perform 100
recovery attempts and report the median elapsed time and median error rate. Figure 4.5
(third to sixth images from the left) shows representative recovered images for each packet
size.

The primary type of error introduced is a skewing of pixel locations in the recovered
image. This skew occurs because the attack leaks a vertical column of pixels all at once —
limited to the number of pixels that can fit within a single packet. If the attack misses a
pixel in the signal then subsequent pixels become offset. Moreover, these errors become
more common as the packet size increases.

Figure 4.6 illustrates quantitative results. We use the Levenshtein distance (Levenshtein,
1966) to measure the error rate and report the median value from 100 measurements. The
median runtime to leak the entire 25px by 25px image across the three colour channels
(red, green, and blue) is 116 s (16px per second) at the lowest speed to 7 s (267px per
second) at the fastest. As expected, the median error rate increases as the speed increases,
starting at 1% at the lowest speed and increasing to 10% at the highest speed.

66 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

j:-/ 100 [Attack Time || o @
g Error Rate S
=
% 50 101 8
: i :
< ol | | E B2 =l

1 2 4 8 16 32

Pixels Per Packet

FIGURE 4.6: Packet Size vs. Time & Error Rates:
Data showing that increasing the number of pixels transmitted per packet
reduces redundancy and therefore increases error rate, however it also
significantly decreases attack time.

Identifying the Target Set

Thus far, our evaluation has assumed an attacker prepared to leak an arbitrary number of
pixels. We now measure the time required to setup the attack.

Setup. To identify the target cache set, we use the technique described in Section 4.3.1.
To validate our results, we patch Firefox to output the addresses of each eviction set and
to output the address of the filter tables. We then use the methods of Maurice et al. (2015)
to verify whether our attack correctly identifies filter memory accesses in the cache.

Method. Since false detections of the transmitted preamble are possible, we record
multiple traces per cache set. If the preamble is detected at least once during these
recordings, we mark the set as a candidate. We then record the same number of traces
again from each candidate set. If the preamble is detected in at least three of these
subsequent traces, we confirm the set as the target. This process is repeated 21 times
for each number of recorded traces, and the median identification time and accuracy are
reported in Table 4.2. The median time to identify the target set ranges from 372 to 1,257
seconds, with 48% to 77% of runs correctly identifying the target set on the first iteration
through all eviction sets.

4.3. Recovering Pixels 67

samples Time (s) Accuracy

40 1257.59+169 7%
30 999.56+152 67%
20 644.57+115 96%
10 372.39£60 48%

TaBLE 4.2: Time To Identify a Target Set:
The median time in seconds to identify a target set and the portion of
runs that identify the target set after searching through the cache once
(Accuracy).

FIGURE 4.7: Effect of system noise on leakage:
From left to right: The original image, ideal leakage, a recovered image on
a system without noise, and a recovered image on a system with noise.

System Noise

Finally, we evaluate our attack in a more realistic scenario where the victim has multiple
browser tabs open. We use the same experimental setup as above but we open a new
tab that plays a YouTube video. Figure 4.7 illustrates a representative qualitative result,
showing a slight degradation in the quality of the recovered image. Over 100 runs,
compared with earlier results, the median runtime increases to 476 seconds (4.09 x) with
a median error rate of 2.72% (2.68 x).

68 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

Work Side-Channel Measurement Target Mitigated Speed
Stone (2013) Filter Optimizations Page Rendering v 10
Kotcher et al. (2013) Filter Optimizations Page Rendering 4 <1
Andrysco et al. (2015) Subnormal Floats Page Rendering 4 16
Kohlbrenner and Shacham (2017) Subnormal Floats Page Rendering v 60
Wang et al. (2023) Power Consumption Page Rendering X 3
Taneja et al. (2023) Power Consumption Page Rendering X <1
This Work Memory Accesses Memory Accesses X 267

TaBLE 4.3: Comparing Pixel-Stealing Attacks:
We report the channel that information is leaked through, what each work
measures to extract information from the channel, whether the attack has
been mitigated, and the speed of the attack in bits per second (approxim-
ately).

4.3.3 Comparisons to Existing Works

Table 4.3 compares the speed of our attack with other cross-origin pixel-stealing attacks.
All listed works leverage timing side-channel attacks on filters to extract cross-origin
pixels. We compare the leakage channel used, the method each work employs to extract
information from that channel, whether the attack has been mitigated, and the attack
speed measured in pixels per second (using the figure reported by the work).

Earlier works exploit optimisations within the filters themselves, whereas later works,
including our own, leverage leakage through microarchitectural side channels.

All previous attacks extract side-channel information by measuring the total time
taken to render the page, thereby indirectly inferring the filter execution time. In contrast,
our attack obtains side-channel information by measuring filter memory accesses. This
fundamental difference enables us to achieve speeds that surpass the display refresh rate.

Like recent pixel-stealing attacks, our method remains unmitigated. Fortunately,
generic countermeasures against cross-origin pixel-stealing attacks have been proposed,
and these mitigation strategies would neutralize all such attacks, including the attack
presented in this work. We discuss these countermeasures in greater detail in Section 4.6.

4.4. From Pixel Stealing to Text Stealing 69

4.4 From Pixel Stealing to Text Stealing

We now demonstrate how to extend our basic pixel-stealing attack to create a text-stealing
attack capable of recovering sensitive text content from third-party websites. We adapt
previous work by Stone (2013), which targets monospaced fonts that are easily pixelated,
to modern vector-based proportional-width fonts with kerning.

—
-

FIGURE 4.8: Stretching Pixel vs. Vector Content:
Pixel-based content remains pixelated after stretching (left), whereas vector-
based content is resampled and remains smooth (right). Both regions in the

original images are the same size: 3 x3px.

Text Rasterization. Our pixel-stealing attack scales an image to isolate and amplify
individual pixels. Pixel-based content can be scaled in a way that preserves the discrete
structure of the original pixels (Figure 4.8 left). In contrast, vector-based content, such as
text, is represented using mathematical expressions that are sampled to generate an image.
When vector graphics are scaled, the scaling is applied to the underlying mathematical
expression, and the image is then re-sampled at display resolution (Figure 4.8 right).
Owing to this difference, applying transformations to isolate the colour of a single pixel is
significantly less effective for text.

Pixel Stealing on Vector-Based Content. To illustrate the problem, we perform our
pixel-stealing attack on a classic pangram and present the recovered text in Figure 4.9.
Compared with pixel-based content, the recovered vector-based text shows consider-
ably more visual degradation, even when the attack recovers one pixel at a time. Despite
the visual degradation, the phrase remains readable owing to the redundancy inherent

70 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

£ Guick o foe umps owaT G lamy
£ ck Sroanl TiFE JUTIDS Jwer o 14Ty
& an i b Tive, ik .-.|..i..._::...-'|,-,IL Ly

FIGURE 4.9: Naive Text Stealing Results:
Recovery of the phrase ‘the quick brown fox jumps over a lazy dog’ at 1, 2,
and 4 pixels per packet.

in English text. However, this redundancy is often absent in the types of sensitive in-
formation attackers typically target, such as names, identification numbers, or passwords,
which are short and contain little to no redundancy.

A natural solution to this problem is to sample the image at a higher resolution to
minimise the degradation. However, doubling the resolution requires four times as many
samples, because the number of pixels grows with the square of the side length. We ask:
Is there a better technique to extract text?

Stone’s Method. We answer this question in the affirmative by building upon the work
of Stone (2013). Stone uses a pixel-stealing attack to recover text character by character.
Rather than naively leaking the entire image of the character, Stone carefully chooses pixels
to reveal so that each revealed pixel eliminates roughly half of the possible characters.
Unfortunately, Stone’s technique was designed to leak rasterised monospaced fonts, not
proportional-width fonts that are more commonly used to display text.

Choosing a ‘Pixel’. We begin by addressing the challenge of identifying the colour of
‘pixels’ in vectorised content. The key observation that enables the adaptation of Stone’s
method to vector-based text is that we can isolate arbitrary rectangular regions of the text,
including rectangles with non-integer coordinates. If we ensure that these rectangular
regions are entirely inside or entirely outside a character, then that rectangle will only
contain a single colour and we will not get any visual artefacts after scaling. Figure 4.10
illustrates example regions for the letters ‘A’ through ‘F’.

4.4. From Pixel Stealing to Text Stealing 71

ABCDEF

FIGURE 4.10: Exmaple Regions:
A region that lies entirely inside or outside each of the letters ‘A’ through
‘F’ when rendered using the MS Sans Serif font.

Finding Regions. We identify such regions in an offline preprocessing step using Selen-
ium. > We randomly choose x and y coordinates and use a fixed width and height — on
the scale of one-millionth of a pixel. We render each character and scale this region to
the size of the screen. Finally, we take a screenshot of the browser then verify that the
screenshot contains only a single colour and is artefact free.

After collecting enough regions to identify each character, we use a greedy search
algorithm to minimise the number of regions. We select the region which provides the
most information, the region that best splits the alphabet into two equal sets of characters,
then store it in a list. We repeat this process until every character can be uniquely identified.
While this approach does not guarantee the theoretical minimum number of regions, in
practice, we find that it produces a small list of regions suitable for the attack.

Kerning. While this approach enables us to recover the first character, the location of
the next character is hard to predict. Specifically, font rendering engines feature kerning
and will move some characters closer together to achieve a better visual appearance.
With kerning, the position of a character depends on the preceding characters. Although
kerning can involve combinations of three or more characters, this is rare and so we
restrict our analysis to the common case of two-character kerning.

To account for kerning during region collection, we randomly insert a character before
every character in the alphabet. This change yields a list of regions for every possible pair
of characters. We then modify our recovery algorithm to leak subsequent characters by

3 https:// www.selenium.dev/

https://www.selenium.dev/

72 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

using regions obtained with kerning - specifically, we use regions that begin with the
previous character.

4.4.1 Text Stealing Results

We demonstrate our text-stealing technique in a PoC attack that recovers cross-origin
text content — the victim’s Wikipedia username. Since this is a cross-origin attack, we
deploy our two-page architecture as described in Section 4.1 and manually interact with
the page to allow the attack to open a second page in a new tab.

Identifying Username Location. To steal the username, we first need to locate it
on the page. We start by manually opening the page in developer mode and using
getBoundingClientRect to find the rough location of where the username begins. Then,
we use Selenium to automatically refine the location by applying small adjustments and
simulating the attack using screenshots. This is necessary because the resolution of
getBoundingClientRect is not high enough to accurately locate the username.

Stealing the Username. Finally, we execute the attack to validate that we can success-
fully steal text in a cross-origin setting and recover the username of the account.

& Canvascache123 ‘ Eﬁ Talk Sandbox Preferences Beta Watchlist Contributions Log out

Search Wikipedia Q

FIGURE 4.11: Layout of Wikipedia Username.

4.5 History Sniffing

In this section, we demonstrate how our pixel-stealing attack can be applied to history
sniffing. We begin by describing a straightforward approach that tests individual URLs
or small groups of URLs. We then introduce a batch testing method that improves the

4.5. History Sniffing 73

sampling rate when the number of visited URLs is expected to be low relative to the total
number of possible URLs.

.leak {
display: inline-block;
width: 1px;

height: 1px;
background-color: black;
font-size: O;

.leak:visited {
background-color: white;

b

L1sTING 4.4: History Sniffing CSS Style:
The style renders each URL as a single pixel. The pixel is black if the URL
has been visited by the user before and white if it has been visited.

4.5.1 Straightforward History Sniffing

Previous history-sniffing attacks rely on the observation that the colour of a hyperlink
can indicate whether it has been visited (Kotcher et al., 2013; Stone, 2013; Andrysco et al.,
2015; Huang et al., 2020; O’Neal and Yilek, 2022). Our attack builds on the same principle.

To implement the history-sniffing attack, we first create a pixel whose colour reflects
whether a specific URL has been visited. To achieve this effect, the attacker page includes
a CSS style similar to the example shown in Listing 4.4.

The first rule styles each link as a 1x1 pixel box with a black background. The second
rule uses the : visited selector to change the background to white, if the link points to a
URL previously visited by the victim.

Once such a pixel is created to reflect whether a URL has been visited, we can apply our
pixel stealing attack to recover the colour of the pixel and thereby determine whether the
victim visited the website. We can leak multiple URLs simultaneously, by repeating these

74 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

steps to generate individual pixels with colours that reveal whether each corresponding
URL has been visited. After revealing whether each URL has been visited, we update
the href attribute of each link to point to a new URL, which prompts the browser to
recalculate and update the appearance of each link.

4.5.2 Set Query Optimisation

History-sniffing attacks do not directly expose a victim’s browsing history; instead, they
leverage the browser as an oracle to determine whether a specific URL has been previously
visited. To recover a large portion of the victim’s browsing history, the attacker queries
this oracle repeatedly. However, this process is computationally expensive, as the oracle
must be queried for each URL independently.

To reduce this cost, we develop the set query method that exploits the underlying
mechanisms of our pixel stealing attack to query over a thousand URLs at once. Recall that
our pixel-stealing attack uses Prime+Probe to measure data-dependent memory accesses
by a filter. However, because memory access occur much faster than we can perform
Prime+Probe measurements, we had to reduce the speed of the filter by stretching the
image.

Blurring Measurements. If we did not stretch the image, then the filter would process
different pixels within a single Prime+Probe measurement ‘blurring’ the effects of several
distinct memory accesses together. In each measurement, the attack detects access to a
specific memory location but it cannot determine the number of accesses to that location
or the order of accesses to that location.

Typically, blurring memory accesses together in this way is undesirable because it
loses information. For example, a set of pixels that contains exactly one white pixel results
in the same measurement as a set of pixels that contains several white pixels. In both
cases, the attack detects that the location in memory for white pixels was accessed, but
cannot determine the number of memory accesses or the order of memory accesses to that
location. Because the attacker cannot distinguish between these two cases, they cannot
determine which pixels are white, they only learn that one or more pixels are white.

Leveraging Blurring. While Prime+Probe cannot determine the number of memory
accesses to a location, it can distinguish zero accesses from one or more accesses. The key
insight is that if we expect most URLs to be unvisited, we can group these URLs together

4.5. History Sniffing 75

and use a single measurement to confirm whether all the URLs are unvisited. Figure 4.12
illustrates example measurements with no visited links and some visited links.

Specifically, we encode unvisited links as black pixels and visited links as white pixels
then monitor filter memory accesses. If no white pixels are observed, then we conclude
that none of the links have been visited and move onto the next set to query. Otherwise,
we split the set into two subsets and perform the same measurement on each subset. If a
subset contains at least one visited URL, we continue to recursively apply this process
until we either reach a subset without any visited URLs or a subset that contains only a
single URL that is visited.

When exactly one URL is visited, this binary search allows us to identify it with
O(log n) samples. However, as the number of visited URLs increases, the required samples
approaches O(nlog n), making it efficient in such cases to use the simple method, which
queries each URL individually and always identifies the visited URLs in O(n) samples.

Method Selection. We address this issue by dynamically switching between the simple
and set query methods based on whether the website is in the Alexa Top 1,000 most visited
websites. For websites in this list, we assume a high likelihood that the URL has been
visited and use the simple method. For all other websites, we use the set query method.

4.5.3 Experiment Description

In this section, we describe the experiments conducted to evaluate the performance of
our history-sniffing attack.

Fabricating History. We begin by fabricating browsing history. We sample from the
Alexa Top 50,000 websites, so that popular websites are more likely to be included in the
fabricated history. * We then use Selenium to populate the browser history by opening
each website. Since not all websites will be stored successfully in the browser history,
either because the website failed to load or because it redirected the browser elsewhere,
we verify the list of websites inserted into the history by simulating the attack. Specifically,
we navigate to a webpage that renders the list of websites as black or white pixels using the

“We include websites in the history with a probability of roughly % where n is the position of the
website in the Top 50,000.

76 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

1,000
800 - 2
600 |- 2
400 [:
200 -

0 | | | | |
0 5 10 15 20 25 30

Approximate Time (us)

Probe Time

(A) No Visited Links
1,000 T
800 - :
600 - :
400 - :
200 |- Y

0 | | | | |
0) 10 15 20 25 30

Approximate Time (us)

Probe Time

(B) Some Visited Links

FIGURE 4.12: History Sniffing Memory Access Patterns:
Access Patterns for the Set-Query Attack.

style shown in Listing 4.4 then take a screenshot to obtain the ground truth for evaluating
the attack.

History Sniffing. The history-sniffing attack is performed over the same set of 50,000
websites. As described earlier, we use the simple method for the top 1,000 websites and
split the remaining 49,000 websites into batches of 1,000 and use the set query method to
recover them.

4.6. Countermeasures 77

4.5.4 Results

Table 4.4 summarises the results of our experiments. For each test, we vary the number
of samples and measure its affect on runtime, recall (the proportion of websites in the
victim’s history that were identified by the attack), and accuracy (the proportion of
websites identified as visited that were in the victim’s history). We only evaluate the set
query method, as the simple method’s performance is identical to regular pixel stealing
analysed in Section 4.3.2.

4.6 Countermeasures

Total Cookie Protection. Total Cookie Protection is a new feature that enforces stricter
control over HTTP cookies by ensuring that each requested cookie is only sent to the
domain that originally set it. Requests that violate this policy are blocked. Mozilla enabled
Total Cookie Protection globally for all users on June 14, 2022. This update applies to
Firefox versions starting from Firefox 101 and all versions of Firefox Nightly but does not
affect any versions of Firefox ESR. While this feature effectively mitigates all cross-origin
pixel-stealing attacks, it does not impact the history-sniffing attack, because the rendering
of visited links is independent of cookies. Safari implements a similar countermeasure
called Intelligent Tracking Protection, which also prevents cross-origin pixel-stealing
attacks.

Constant Time Programming. Constant-time programming is a coding style designed
to prevent the use of constructs that unintentionally leak secret information (Osvik et al.,
2006; Brickell et al., 2006; Barthe et al., 2014). Specifically, secret values must not be used
in the conditions of control flow statements, as memory access addresses, or as arguments
to variable-time instructions (e.g., division). While these constraints are highly effective at
preventing side-channel leakage, they often introduce significant performance overhead
and can be difficult or impossible to implement correctly in high-level languages. We
recommend this approach to browser vendors for any fallback filters that are executed on
the CPU.

frame-ancestors. The frame-ancestors directive of the Content-Security-Policy
is a widely supported feature that allows developers to prevent their webpages from being

78 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

loaded within iframe s, thereby blocking malicious embedding. While this directive does
not prevent information leakage from the webpage itself, it stops malicious sites from
embedding and leaking content from otherwise safe victim webpages. Considering that
this technique also protects against other attacks such as click-jacking (Rydstedt et al.,
2010; Huang et al., 2012), we recommend that all website operators implement it. For
website operators that need to support embedding within arbitrary webpages, removing
sensitive information when the content is embedded is advisable.

4.7 Limitations & Future Work

Pixel Stealing. Our pixel-stealing attack is limited to environments where SVG filters
are executed on the CPU rather than the GPU. In Firefox, this condition applies to all
environments. In Chrome, the attack is only applicable if the system is listed on the
Software Rendering List (Chromium Project, 2023). Additionally, our attack is limited to
Intel CPUs featuring inclusive caches. In principle, the attack could likely be extended
to CPUs with non-inclusive caches, potentially by exploiting coherence directories (Yan
et al., 2019), we leave this extension for future work.

Text Stealing. Our text-stealing attack is limited to scenarios where the attacker can
correctly guess the font used by the user. If the user changes the font or uses an unknown
font, they are not vulnerable. While the technique can theoretically extend to languages
with very large alphabets, such as Mandarin, in practice, the attack becomes less practical
as alphabet size increases.

Cross-Origin Content. Our attack assumes that cross-origin content does not employ
security measures such as COEP/CO0P, X-Frame-0Options, or the frame-ancestors dir-
ective. Unfortunately, many websites still do not implement these protections and remain
vulnerable to our attack (Foundation; The HTTP Archive; Helme; Lavrenovs and Melon,
2018; Karopoulos et al., 2021; Buchanan et al., 2018). In addition, we assume that the
browser either does not support or has not enabled Total Cookie Protection or similar
countermeasures.

Theoretical Maximum Bitrate. Our pixel-stealing attack, in its maximum pixels-per-
packet configuration, has a theoretical maximum throughput of 1920 bits per second — 32

4.8. Conclusions 79

bits per packet and 60 packets per second. In practice, the attack achieves a maximum
speed of 267 bits per second. While this practical throughput makes it the fastest side-
channel-based pixel-stealing attack to date, it still reaches only about 14% of the theoretical
maximum.

This limitation arises partly because the attack cannot dedicate all its time to recording
cache activity; it must also allocate time to analyse recorded traces and to identify and
extract packets. Our measurements indicate that approximately half of the attack runtime
is spent analysing cache traces.

In principle, the analysis could be offloaded to a separate thread to allow more con-
tinuous recording of cache activity. However, naive attempts to implement this simply
shifted the bottleneck to message-passing overhead between threads. We leave a more
thorough investigation of efficient multi-threaded collection and analysis methods for
future work.

In addition to analysis overhead, we find that the attack fails to receive a quarter of all
packets on average, even after accounting for missed packets transmitted during analysis.
We attribute this loss to system noise obscuring the preamble, making it unrecognisable
by our signal processing pipeline. Although deploying a more robust signal processing
pipeline with advanced techniques could capture more packets, it is unclear whether the
benefits would outweigh the additional packet loss due to increased analysis time. We
leave a more thorough investigation of this trade-off to future work.

4.8 Conclusions

In this chapter, we present Pixel Thief, a cache-based pixel-stealing attack targeting
Firefox’s SVG filtering engine. Despite several mitigation efforts, we demonstrate that
pixel stealing remains not only possible but also highly practical.

We develop an asynchronous architecture that allows the attacker to measure cache
leakage in parallel with SVG filter execution. This approach enables multiple meas-
urements per filter execution, increasing the data rate and ultimately overcoming the
limitations imposed by screen refresh rates. In addition, we distribute the asynchronous
architecture across two webpages to bypass cross-origin isolation. This technique may
be applicable to other microarchitectural attacks, casting doubt on the effectiveness of
cross-origin isolation as a countermeasure for microarchitectural side-channel attacks.

80 Chapter 4. Mounting a High-Capacity Pixel-Stealing Attack

Fortunately, browser vendors have already begun isolating cookies from iframes.
Although these features are mainly designed to mitigate tracking threats, they also help
prevent cross-origin pixel-stealing attacks. Unfortunately, same-origin pixel-stealing
attacks, such as the history-sniffing attack presented in Section 4.5, remain unaffected;
however, cryptographic constant-time techniques can likely be applied to SVG filters with
minimal performance impact to address these attacks.

Thus far, this thesis has focused on traditional microarchitectural side-channel attacks,
where the target program, the browser in this case, unintentionally leaks sensitive data
because the program exhibits data-dependent behaviour which the adversary indirectly
measures. The next two chapters investigate transient-execution attacks and their ability

to leak sensitive data even when the program does not directly exhibit data-dependent
behaviour.

4.8. Conclusions

81

Fixed Sample Count

Samples Runtime (s) Recall Precision

1 26.27 10% 3%
2 22.75 0% 0%
3 91.21 32% 26%
4 81.62 36% 9%
5 158.26 42% 42%
6 165.71 47% 26%
7 286.61 40% 60%
8 254.34 55% 47%
9 354.77 52% 59%
10 354.62 52% 56%
11 441.97 47% 57%
12 420.86 64% 65%
13 525.45 47% 80%
14 477.48 68% 73%

TaBLE 4.4: Set Query Accuracy Results:
Accuracy of the set query method using different measurements counts
and a majority vote. Recall is the proportion of websites that the attack
was able to recover from the victim history. Precision is the proportion of
websites claimed by the attack to be in the victim history that were actually
in the victim history. Reported time only includes the time to recover the
complete history and excludes pre-attack setup time.

83

Chapter 5

Mounting a Transient Execution
Attack on Modern Browsers

To improve performance, modern processors include branch prediction units that predict
the outcome of branch instructions. When a branch instruction is encountered, the branch
predictor predicts whether the branch will be taken or not, allowing the processor to
continue executing the program speculatively. If the prediction is correct, the processor
gains a performance advantage by avoiding the need to wait for the branch outcome.
However, if the prediction is incorrect, the processor will need to squash the incorrect
execution and re-execute the program along the correct path.

Kocher et al. (2019) were the first to demonstrate how to exploit this behaviour.
Specifically, they showed how an adversary can use JavaScript to bypass bounds checks
on array accesses, resulting in out-of-bounds memory access. This ability to bypass
bounds checks via JavaScript posed a significant problem for many web browsers, as they
commonly relied on these bounds checks and other software-level security features to
isolate websites rendered within the same process. Recognising the risk posed by transient-
execution attacks, browser vendors have largely adopted new security architectures that
isolate websites into separate processes (Reis et al., 2019), even when these sites are
embedded together on the same webpage via iframes. While these process boundaries
do not prevent malicious JavaScript from performing transient-execution attacks, they
limit accessible data to within the process.

Chrome was the first browser to implement such an architecture owing to its exist-
ing multi-process architecture. To further limit accessible memory with out-of-bounds
memory accesses, Chrome partitions the address space to isolate each webpage.

84 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

These security controls use the same-site policy to determine when to isolate webpages
from each other. Unlike the same-origin policy which considers the entire domain, the
same-site policy only considers the final portion of the domain - the Effective Top Level
Domain Plus One (¢€TLD+1). Previous studies have demonstrated vulnerabilities that lie
in the gap between these two policies (Squarcina et al., 2021; Bortz et al., 2011) which
naturally leads to the question: Can transient-execution attacks exploit the same gap on
modern browsers despite deployed countermeasures?

This chapter addresses this question by presenting Spook.js, a transient-execution
attack capable of extracting sensitive information from co-resident webpages despite site
isolation and address-space partitioning. Section 5.1 outlines the challenges involved in
mounting transient-execution attacks on modern browsers and explains how we overcome
them. Sections 5.2 and 5.3 present several attack scenarios in which usernames, passwords,
credit cards numbers, and other personal information are extracted from various websites,
password managers, and extensions. Section 5.4 shows that other Chromium-based
browsers are vulnerable to Spook.js with minimal adaptation. Finally, Sections 5.5 and 5.6
conclude the chapter with a discussion of countermeasures and limitations.

5.1 Spook.js: Mounting Transient Execution Attacks
in Chrome

We now present Spook.js, a JavaScript-based transient-execution attack capable of recover-
ing information across security domains running concurrently in the Chrome browser. In
addition to bypassing all side-channel countermeasures deployed in Chrome (such as low-
resolution timers), Spook.js overcomes several key challenges that remained unresolved
in previous works.

Site Isolation. The core principle behind site isolation is that it separates the attacker
and victim pages into separate processes. However, because this separation is enforced
at the site level (as opposed to the origin level), there is a gap between what the website
developers consider to be a website and what the countermeasures consider to be a website.
We introduce several methods that exploit this gap to consolidate different websites into
the same process.

5.1. Spook.js: Mounting Transient Execution Attacks in Chrome 85

Address Space Isolation. Chrome uses pointer compression to limit the size of pointers
which also limits the amount of memory accessible to each pointer — even in cases where
an attacker can control the pointer. Chrome leverages this limitation in combination
with carefully arranging the address space to limit out-of-bounds memory accesses. We
intentionally misuse objects of one type with operations specialised for another type to
trigger transient type confusion to bypass this countermeasure.

Deoptimisation. As we use objects of the wrong type, the JavaScript engine will ‘de-
optimise’ the specialised code by replacing it with non-exploitable generic code capable
of handling both types. We adapt speculative hiding techniques to the browser to avoid
this deoptimisation.

Speculation Depth. Overcoming address space isolation and avoiding deoptimisation
requires executing many instructions transiently. We use evictions from the LLC to induce
a delay long enough to execute these instructions.

5.1.1 Website Consolidation

To mount transient execution attacks, both the attacker and target websites must reside
within the same address space. Chrome’s site isolation aims to prevent cross-site attacks
by segregating websites into separate processes. However, Chrome allows websites to be
consolidated into the same process according to the same-site policy. Specifically, if the
two websites share the same eTLD+1 domain then they are eligible for consolidation. We
now discuss methods to force consolidation between attacker and victim pages.

iframes. We first observe that consolidation can be achieved by embedding iframes within
a page from the same site. While this method is effective, it cannot be used on pages that
prevent rendering inside iframes, for example, by setting the X-Frame-0Options header to
deny. Because many attacks exploit iframe vulnerabilities, setting this option is a widely
recommended security practice and is employed by many websites.

Memory Pressure. When under memory pressure, Chrome reduces memory usage by
consolidating pages from different tabs, provided the pages originate from the same site.
Furthermore, once consolidation occurs, Chrome adds newly opened pages from into
existing processes rather than creating new processes for those pages, again provided the
pages originate from the same site. However, it is difficult to build an attack around this

86 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

consolidation technique because the attack does not have enough control over memory
consumption across the entire browser.

Opening Windows. Finally, we observe that Chrome consolidates pages opened using
the window.open API when these pages share the same site. Although lacking stealth,
this method is reliable and does not suffer from the same limitations as the previous
consolidation techniques.

Experimental Results. In all cases, these methods allow an attacker operating on one
subdomain (e.g., attack.example.com) to consolidate their pages with content from a
separate subdomain (e.g., sensitive.example.com). We evaluate the effectiveness of each
method using Chrome 89.0.4389 on a machine with an Intel i7-7600U CPU and 8 GB of
RAM, running Ubuntu 20.04. We find that both the iframe and opening window methods
will always consolidate pages from the same site.

To evaluate the memory pressure method, we open several websites in different tabs.
We find that opening 17 websites causes Chrome to begin consolidation. However, the
threshold for consolidation depends on the machine’s memory size. On a machine with
more memory we need to open more websites (e.g., 33 websites on a machine with 16 GB
of RAM).

5.1.2 Breaking Address Space Isolation

Chrome employs a pointer compression technique that represents pointers as 32-bit offsets
from a fixed base address (Sheludko and Solanes, 2020). This base address defines an
isolate within which memory is allocated. Because pointers are represented as 32-bit
offsets, instead of a full 64-bit address, the amount of memory accessible to each pointer
is limited. Chrome leverages this limitation as a security feature by carefully arranging
the address space so that memory accesses through compressed pointers are constrained
to their respective isolate.

In this section, we overcome this countermeasure using transient type confusion.
Specifically, we trick Chrome into accessing a malicious object as a typed array. Because
typed arrays use 64-bit pointers to refer to their underlying buffers, we can use the
malicious object to access arbitrary 64-bit addresses, bypassing Chrome’s partitioning
countermeasures. While type confusion attacks have been previously demonstrated in the
literature (Kiriansky and Waldspurger, 2018; Hadad and Afek, 2018; Kirzner and Morrison,

attack.example.com
sensitive.example.com

5.1. Spook.js: Mounting Transient Execution Attacks in Chrome 87

2021), to the best of our knowledge, this is the first demonstration of transient type
confusion attacks against the modern Chrome browser.

UInt8Array-access(array, index){
// check the type of array
if (array.type !== UInt8Array){
goto interpreter // handle wrong type
}

// compute array length
len = array.length

// check length is in bounds
if (index >= len) {
goto interpreter // Handle out of bounds

// compute pointer to backing storage
ptr = array.external + ((array.base + heap_ptr) & OxFFFFFFFF)

// do memory access
return ptr[index]

LisTING 5.1: Pseudocode for Array Accesses:
Pseudocode of operations performed by Chrome’s JavaScript engine during
array accesses.

Array Indexing. Consider the following JavaScript: array [index]. There are several
valid meanings for this expression that depend on the types of array and index. Chrome
optimises this expression by speculating that these types never change, enabling chrome
to replace generic code capable of handling any possible combination of types with
specialised code optimised to handle only a specific set of types.

88 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

For example, if array is a Uint8Array and index is an integer, then Chrome replaces
the generic code with specialised code similar to Listing 5.1. The code first checks whether
array is a Uint8Array (Line 3) then checks whether index is inside of the array (Line 11).
If both checks are successful, the code constructs a pointer to the array buffer (Line 16)
and dereferences it with index (Line 19). If either check (Lines 3 or 11) fails, control flow
returns to the interpreter, which handles the more complex generic cases.

Uint8Array

L T e 1

~ ~ AN ~ "
header other fields length external base

AttackerClass

L T e
heéaer »;;;4~§;r4»;;;4~;;;«~§;IJ~;;;J»;;;4»;;;4~;£;4~;§;4

FIGURE 5.1: Compariing Memory Layout:
The memory layout of Uint8Array (top) and AttackerClass (bottom).
Ticks denote the boundaries of fields, rectangles within each field denote a
byte, and colours are used to highlight field alignment across types.

Array Layout. Figure 5.1 (top) illustrates the memory layout of a Uint8Array object. The
layout begins with a header that identifies the object type and includes other metadata. The
header is followed by several fields that define the array properties. Of particular interest
are the length, which tracks the number of elements in the array, and the external and
base fields, which together form a pointer to the underlying array buffer. !

A Malicious Memory Layout. Recall that the goal of our attack is to trick Chrome into
accessing a malicious object as a typed array. Figure 5.1 (bottom) illustrates the layout
of this malicious object. AttackerClass consists of ten fields named f0-£9. Because

1Two fields are used for legacy reasons.

5.1. Spook.js: Mounting Transient Execution Attacks in Chrome 89

these fields are JavaScript properties, Chrome uses 32-bits to represent each field. Notably,
when we compare the layouts of AttackerClass with Uint8Array the £5 and £6 fields
align with length, £7 and £8 with external, and £9 with base.

Type Confusion. Our attack works by training the processor to predict the outcome of
type checking branches within an array access (Listing 5.1 Line 3). When we later invoke
an array access on a malicious object, the processor follows this prediction which causes
the JavaScript engine to access the malicious object as though it were a Uint8Array,
treating the values of £7-f9 as though they defined a pointer to the array’s underlying
buffer. Because we control every field of the object, we can manipulate the address to
access arbitrary process memory. Appendix A describes the precise method we use to
craft arbitrary pointers.

5.1.3 Avoiding Deoptimisation

The previous section described how we cause the processor to mispredict a type checking
branch within an array accesses to trigger an out-of-bounds memory access. Eventually
the processor will detect this mispredicted branch, squash the resulting incorrect execution,
and restart execution with the correct branch outcome. In this case, the branch correctly
identifies that our object is not a Uint8Array and directs control flow into the JavaScript
engine, which ‘deoptimises’ the array access by replacing it with a non-exploitable generic
code path.

We avoid this deoptimisation by adapting speculative hiding techniques (Lipp et al.,
2018; Mambretti et al., 2020; Goktas et al., 2020; Canella et al., 2019) to the browser
context. Specifically, we insert an additional branch that has the same behaviour as the
type checking branch. In the training phase, both branches are taken, and in the attack
phase, both branches are predicted as taken. However, when the processor detects the
misprediction, it will restart execution at this additional branch instead which enables us
to direct control flow back into the attack.

Listing 5.2 presents the JavaScript code for the attack, which consists of four main
components, described below.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

90

Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

// Setup
let objects

objects[inde

// Training
for(let i=0;

// Attack

set.evict()

// Gadget

if(i < obj

b
b

for (let i = 0; i < 64; i++) {
objects[i] = new Uint8Array (0x20)
objects[64 + i] = new AttackerClass(i)
collectGarbage()

}

let [index, set] = findSuitableObject(objects)

objects[index] .f5
objects[index] .f6
objects[index] .
objects[index] .f8
objects[index] .f9 = 0

gadget (index)
side_channel.receive()
function gadget(i){

let object = objects[i]

let value = object[0]
side_channel.send(value)

= new Array(128)

x].f0 = 1

i<10000; i++) gadget(0)

1 // length (bottom 32-bits)
0 // length (top 32-bits)
Lower32BitsOfAddress
Upper32Bits0fAddress

Hh
~
1l

// Evicts object[index]

ects[index] .f0) {

LisTING 5.2: Pseudocode for Speculative Type Confusion:

5.1. Spook.js: Mounting Transient Execution Attacks in Chrome 91

Setup. Lines 4-8 initialise an array of objects assigning some entries to Uint8Array
instances and others to AttackerClass instances. Line 7 triggers Chrome’s garbage
collector, by allocating many large buffers and allowing them to go out of scope, which
compacts the heap and reallocates previously initialised objects into contiguous memory
locations. Line 10 identifies a suitable malicious object. Finally, Line 11 sets a value that
we will use to avoid deoptimisation later.

Training. The training stage has two goals. First, it provides ample opportunity for
Chrome to specialise the array access code in gadget to the code in Listing 5.1. Second, it
trains the processor to predict specific outcomes for branches within gadget (including
the branches in the array access). Line 14 achieves these goals by calling gadget 10,000
times with an index to a Uint8Array.

Attack. Lines 17-21 configure fields £5 through £9 which correspond with the length,
external, and base fields of a Uint8Array. Specifically, we set length to 1, external
to the target 64-bit address, and base to 0. Line 22 evicts the header of the malicious
object from the cache, then Line 23 calls gadget with the index of the malicious object.
After the gadget returns, Line 24 retrieves the contents of memory at the target address
(leaked on Line 31).

Gadget. The core of the attack occurs within gadget. Line 28 is the additional branch
we use to avoid deoptimisation. Line 30 is the vulnerable array access, specialised for
Uint8Arrays because of the training phase. During the attack phase, gadget triggers type
confusion by performing the vulnerable array access on an instance of AttackerClass.
The contents of the selected address are loaded into value which is leaked on Line 31
through a side channel. After some time, the processor detects the misprediction inside of
the array access and continues execution at Line 28 which immediately exits gadget.

5.1.4 Obtaining Deep Speculation

The previous sections describe how to bypass address space isolation and avoid deoptim-
isations, however these techniques require many instructions to be executed transiently.
To provide enough time for the processor to execute instructions beyond the type checking
branch, we delay the evaluation of the branch by evicting the header (which contains the
type identifier) of our object from the LLC. However, we need to still use the object as

92 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

Cache Line Cache Line
eeo [TTOPPITOPTTOOETL eee PTTOPTTORTITLLITLOLIL oo
~v — ~v —_—
header f0 f1-f4 f5 f6 f7v £8 £9

FiGURE 5.2: Cacheline Overview:
A malicious object split across cache lines. The location of the split must
occur between the £0 and £5 fields. Ticks denote the boundaries of fields,
rectangles within each field denote a byte, and colours are used to highlight
which cache line data resides in.

a Uint8Array during type confusion. Specifically, we need to evict our object’s header
from the cache but retain the fields £5-£9 in the cache. We do this by placing our object
over two cache lines with the boundary between these cache lines somewhere between
the £0 and £5 fields (Figure 5.2).

Use of Memory Compaction. In a previous section, we described how the attack
triggers Chrome’s garbage collection after allocating instances of the Uint8Array and
AttackerClass types. As a side effect, garbage collection compacts the heap by real-
locating these objects into a contiguous memory layout. Because the sizes of an
AttackerClass object and a cache line are not multiples of each other, compacting
the objects together changes where objects begin within the cache lines, guaranteeing the
existence of at least one object with £0 and £5 fields that span two cache lines.

Finding Suitable Objects. Listing 5.3 presents the code used to identify a suitable
instance of AttackerClass. Line 1 generates eviction sets for the entire LLC using the
method from Vila et al. (2020). Line 4 iterates over each instance of AttackerClass and
Line 7 iterates over each eviction set. Lines 8-10 and Lines 12-14 implement the logic for
detecting whether the eviction set can successfully evict the £0 field while leaving the £5
field unaffected. Once a suitable object is found, the code returns the index of our object
and the eviction set to evict it.

Because we cannot directly access the header of any object, we use the first field (£0)
instead. Since the object is smaller than a cache line, if £0 and £5 are on separate cache
lines then £0 must be on the same cache line as the header.

5.1. Spook.js: Mounting Transient Execution Attacks in Chrome 93

EvictionSets = GenerateEvictionSets()

function findSuitableObject(objects) {
for (let index = 64; index < objects.length; index++) {
let candidate = objects[index]

for (set in EvictionSets) {
access(candidate.f0)
set.evict()
let x = isCached(candidate.f0)

access(candidate.f5)
set.evict()
let y = isCached(candidate.f5)

if (x & 'y) {
return [index, set]
}
}
i 3s

LisTING 5.3: Pseudocode for Finding Objects that Straddle Cach-
elines.

Precision Timing. To determine whether a field has been evicted from the cache, we
measure the time taken to access it. However, in an effort to reduce the threat of microar-
chitectural attacks, Chrome has reduced the resolution of its timer API (Chromium Project,
2016b). We follow the approach of Schwarz et al. (2017), and implement a counting thread
using web workers and SharedArrayBuffer.

L1 vs LLC Evictions. Google’s leaky.page transient-execution PoC (Google, 2021) uses
L1 evictions to evict fields from the cache. While constructing L1 eviction sets is far
simpler and is more reliable than constructing LLC eviction sets, our attack requires

94 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

a greater delay after misprediction. If we evict our object’s header from the L1 cache,
without evicting it from the LLC, our attack consistently fails.

We believe this failure is due to the size of the speculation window — the number of
instructions that can be executed between misprediction and the processor squashing
the resulting incorrect execution. When £0 is evicted from the L1 cache, it will be served
from the L2 cache within approximately 10 cycles. However, if f0 is evicted from the
LLC, it will be retrieved from main memory in over 100 cycles. We believe that our attack
requires this longer retrieval time so that it can transiently execute more instructions,
requiring the need for complex LLC eviction techniques. We leave further investigation
of this effect to future work.

5.1.5 End-to-End Attack Performance

The previous sections have described a combination of techniques that enable an attacker
to recover the contents of arbitrary memory addresses within the process. We now
evaluate the effectiveness of these techniques across several generations of processors,
including CPUs made by Intel, AMD, and Apple.

Attack Setup. On Intel and Apple processors, we run Spook.js on unmodified Chrome
version 89.0.4389.114. For benchmarking, we initialise a 10 KB memory region with known
random content and then use Spook.js to leak it.

Intel and Apple. Table 5.1 summarises our findings, averaging over 20 attack attempts.
Spook.js leaks data at a rate of 500 b/s on Intel processors ranging from the 6th to the
9th generation, with an accuracy exceeding 96%. On the Apple M1, Spook.js achieves a
leakage rate of 450 b/s with 99% accuracy.

AMD Zen. Unfortunately, we are unable to construct LLC eviction sets on AMD’s Zen
architecture. As Spook.js relies on the larger speculation window provided by LLC eviction,
we cannot run end-to-end Spook.js experiments on AMD systems. To evaluate the core
speculative type confusion attack without eviction sets, we modify V8 to expose the
clflush instruction. With this configuration, Spook.js achieves a rate of around 500 b/s,
indicating that if an efficient LLC eviction method is developed, Spook.js could be applied
to AMD processors too. We leave the creation of such eviction techniques to future work.

5.2. Attack Scenarios

95

Processor Architecture Eviction Method Speed Error
Apple M1 M1 Eviction Sets 451 0.99%
Intel i7 6700K Skylake Eviction Sets 533 0.32%
Intel i7 7600U Kaby Lake Eviction Sets 504 0.97%
Intel i5 8250U Kaby Lake R Eviction Sets 386 3.93%
Intel i7 8559U Coffee Lake Eviction Sets 579 1.84%
Intel 19 9900K Coffee Lake R Eviction Sets 488 3.76%
AMD TR 1800X Zen 1 clflush 591 0.02%
AMD R5 4500U Zen 2 clflush 590 0.06%
AMD R7 5800X Zen 3 clflush 604 0.08%

TABLE 5.1: Spook.js Performance on Various Architectures: Perform-
ance of Spook.js on various processors. Speed is in bits per second. Error is
the percentage of bits that were incorrectly recovered.

5.2 Attack Scenarios

In this section, we explore the real-world implications of Spook.js by investigating several
scenarios where the attack can extract secret or sensitive information.

Experimental Setup. All experiments in this section are conducted on a ThinkPad X1
laptop with an Intel i7-7600U CPU running Ubuntu 18.04. Unless otherwise noted, we
use an unmodified Chrome version 89.0.4389. All Chrome settings remain at their default
configurations, including all built-in countermeasures against side-channel attacks.

5.2.1 Website Identification

In our first scenario, we assume the attacker hosts a malicious page containing Spook.js
code on a public hosting service. The attacker then convinces the victim to open an
unrelated page from the same hosting service, for example, the victim’s personal page.
While most pages on the hosting service are publicly accessible, the information about
which pages the victim currently has open is private and should remain inaccessible to
the attacker.

96 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

Attack Setup. To demonstrate how Spook.js compromises the victim’s privacy, we
conduct the attack on bitbucket.io, a Git-based hosting service. We host a malicious
webpage containing the Spook.js code on bitbucket.io and create three sample personal
pages, as shown in Figure 5.3 (top). Following Bitbucket’s naming convention, the URLs
of all four pages follow the pattern username.bitbucket.io , making them eligible for
consolidation. The ground truth usernames for our three sample personal pages are:
spectrevictim, lessknownattacker, and knownattacker.

Experimental Results. After opening the four websites in separate tabs, we consolidate
all Bitbucket pages into a single renderer process then use Spook.js to leak the memory
space of that renderer process. By analysing the results, we successfully recover a list
of URLs corresponding to the tabs currently being rendered (Figure 5.4). Although the
content of our sample victim pages is publicly accessible, the list of bitbucket.io websites
simultaneously viewed by the user is private and should not be exposed to a malicious
page hosted on bitbucket.io.

5.2.2 Recovering Sensitive Information

In the second scenario, we examine a protected subdomain that displays private data to
authenticated users. As an example, we leverage the structure of our university’s website,
which, at the time of writing, hosts its main page, single sign-on (SSO) page, and internal
portal pages under the same site as personal webpages.

Attack Setup. In collaboration with our University’s IT department, we host the Spook.js
code on a personal webpage. While logged in with the author’s account, we open three
pages from the human resources subdomain in separate tabs. Each page displays the
author’s contact details and direct deposit information (Figures 5.5 and 5.6 top). To protect
the author’s privacy, we edit the local copy of the DOM before executing the attack.

Experimental Results. After opening the three tabs, we also open the page hosting
the Spook.js attack. Chrome consolidates all four pages into the same renderer process,
allowing the attack page to recover sensitive data displayed on the other three pages
(Figures 5.5 and 5.6 bottom).

bitbucket.io
bitbucket.io
username.bitbucket.io
bitbucket.io

5.2. Attack Scenarios 97

5.2.3 Attacking Credential Managers

The previous chapter demonstrated how to use Spook.js to steal sensitive information
embedded within pages hosted on the same site as an attacker controlled page. This section
demonstrates the security implications of Spook.js on popular credential managers, which
automatically fill in login credentials associated with a website, often without any user
interaction. Furthermore, we show that credentials can be recovered even if the user does
not submit them by pressing the login (or any other) button, as simply populating the
credential fields places this sensitive data into the renderer process’s address space.

Attacking Chrome. We use the experimental setup described for the university ex-
periments, where both the login page and the internal attacker page are hosted by the
university and rendered within the same process. We assume that the credentials are
already saved in Chrome’s password manager. Figure 5.7 illustrates the results of the
experiment in which Chrome’s password manager auto-fills the credentials (top), and we
successfully recover these credentials without requiring any user interaction (bottom).

Attacking LastPass. We achieve similar results when using the same experimental setup
but with LastPass version 4.69.0 to autofill passwords instead of Chrome’s built-in manager.
In addition to leaking credentials, we also extract other account usernames associated
with the website. Figure 5.8 illustrates the results of this experiment in which LastPass
enables the user to select which account to login as (top), and we successfully recover the
list of account names (bottom).

One-Click Credential Recovery. We take the previous attack a step further by showing
that credentials can sometimes be recovered as soon as the victim opens our malicious
webpage without the need for additional tabs. This capability is enabled by two key
observations: First, that the login page can be embedded within an iframe. Second, that
LastPass fills user credentials automatically, without any visibility or interaction with the
user. Figure 5.9 illustrates the results of the experiment in which we embed the login page
within an invisible iframe (top) and successfully extract the credentials without the need
for the victim to voluntarily or knowingly visit the login page (bottom).

Extracting Credit Cards. In addition to passwords, credential managers also manage
credit card information, automatically filling the information when authorised by the user.
Figure 5.10 illustrates the results of an experiment in which we successfully recover the

98 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

victim’s card details (top) after they are populated on a payment page (bottom). We achieve
similar results with both LastPass and Chrome’s built-in credit card autofill features.

5.2.4 Attacking Tumblr

The previous section demonstrated how to use Spook.js to steal credentials that were
automatically filled in by a credential manager. This section demonstrates the same
technique on Tumblr, a popular micro-blogging platform with 327 million unique visitors
as of January 2021 (statista, 2021).

Attack Setup. The Tumblr platform hosts user blogs under the domain username.tumblr.
com, while the login page and account settings are hosted under tumblr.com. This ar-
chitecture relies on enforcement of the same-origin policy to prevent cross-site attacks.
Unfortunately, because these pages all share the same site, Chrome will allow them to be
consolidated into the same process.

Although users cannot freely add JavaScript to blog posts, or otherwise inject it into
the tumblr.com domain, they can customise their own blog’s theme using HTML. More
specifically, Tumblr’s Cross-Origin Resource Sharing (CORS) policy prevents importing
scripts from different origins, and its Content Security Policy (CSP) disallows creating
Blob objects. Despite these restrictions, Tumblr’s CSP permits the use of data URLs and
the eval function, enabling us to embed the attack code as inline JavaScript within a URL.
For this attack we use Chrome version 90.0.4430.

Attack Results. Using a similar setup to the previous section, we create a malicious blog
on Tumblr’s platform containing the Spook.js attack code. We achieve consolidation in
two ways: first, through memory pressure as described previously, and second, via user
interaction which we use to open a window and load pages into.

Figure 5.11 illustrates the results of this experiment in which the victim’s credentials
are automatically filled into the page (top) and we successfully recover them (bottom).
In addition, Figure 5.12 illustrates the results of a second experiment in which we open
a webpage listing which blogs are owned by the victim (top) and successfully recover
this list of blogs (bottom) — this list of blogs is ordinarily only accessible to the user. We
achieve similar results with either consolidation method.

username.tumblr.com
username.tumblr.com
tumblr.com
tumblr.com

5.2. Attack Scenarios 99

5.2.5 Exploiting Unintended Content Uploads

Until now, our attacks have assumed that the attacker’s webpage resides directly on the
domain where the target content was originally uploaded. We now relax this assumption,
demonstrating that content uploaded to one domain is sometimes silently transferred to
another. This behaviour enables Spook.js to recover the content even when served from a
different domain.

Google Sites. As an illustrative case, we examine Google Sites, which allows users to
create personal webpages and embed HTML containing JavaScript under sites.google.com.
Google Sites then executes this user-supplied code within a sandboxed iframe, served
from googleusercontent.com. As we cannot gain a presence on the google.com directly we
cannot directly target other google.com pages.

However, we observe that Google hosts more than just personal webpages on the
content domain. Specifically, Google appears to use the content domain as a general-
purpose storage location for user content, automatically uploading email attachments,
images, and thumbnails for Google Drive documents.

Google Photos. Focusing on Google Photos, we discover that all images uploaded or
automatically synchronised to the service are hosted on the content domain. When
users view images through photos.google.com, the page loads the images from the content
domain using img tags. When displayed in this manner, these images are not consolidated
with pages from the content domain.

Nevertheless, consolidation can occur if the user chooses alternative methods of
viewing the image. For example, if the user opens the image in a new tab, the image loads
directly from the content domain. Similarly, accessing the image through a shared link,
or a QR code also renders the image directly from the content domain. In all cases, the
image will be eligible for consolidation with other pages.

Attack Setup and Results. We create a page on sites.google.com that serves Spook.js,
which we open in one tab. In a second tab, we open an image uploaded to the victim’s
private Google Workspace. We then trigger consolidation through memory pressure and
recover the image (Figure 5.13).

sites.google.com
googleusercontent.com
google.com
google.com
photos.google.com
sites.google.com

100 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

5.3 Exploiting Malicious Extensions

Moving beyond the security implications of website consolidation, this section explores
the security risks associated with the consolidation of Chrome extensions. At a high level,
Chrome allows users to install JavaScript-based extensions that modify the browser’s
default behaviour, such as by blocking ads, applying themes to websites, and managing
passwords.

Extension Permissions. To support this functionality, Chrome employs a permissions
model that grants extensions capabilities beyond those available to regular JavaScript
code executed by websites. To protect these privileged capabilities from both websites
and less-privileged extensions, it is essential that Chrome correctly isolates extensions
from each other and from web content.

The LastPass Extension. To demonstrate the security implications of Chrome extension
consolidation, we examine the LastPass Chrome extension. When a user logs into the
LastPass extension, it retrieves an encrypted vault of passwords from LastPass’s cloud
service and decrypts it using a key derived from the user’s master password (LastPass).
Our empirical analysis shows that while passwords are decrypted only when needed for
autofill, LastPass retains all associated usernames in plaintext in memory.

Attack Setup and Results. We conduct the experiment using Chrome with the LastPass
version 4.69.0 extension and sign into our LastPass account. We also port Spook.js into
a malicious Chrome extension that requests no permissions and install it on the same
system. Then, we consolidate the two extensions into the same process using memory
pressure. Finally, we use LastPass to log in to any website, which triggers LastPass to
decrypt and populate the website’s credentials. Since Spook.js runs in the same process as
the LastPass extension, we can access all of its memory, including decrypted credentials
(Figure 5.14 top) and the victim’s master password (Figure 5.14 bottom).

5.4 Attacking Additional Browsers

We investigate Spook.js on Microsoft Edge and Brave. Edge is the default browser on
Windows 10, holding about 5% of the desktop market share (Kinsta), while Brave is a
popular privacy-focused browser designed to block ads and trackers (Brave). As both

5.5. Countermeasures 101

browsers are built on Chromium, they inherit its site isolation implementation, policies,
and associated limitations.

We experimentally confirm that the consolidation techniques are effective in both
browsers. Table 5.2 shows that Spook.js achieves leakage rates on Microsoft Edge and
Brave comparable to those obtained on Chrome.

Processor Browser Leakage Rate Error Rate
Intel i7 6700k Brave v89.1.22.71 504 B/s 1.25%
(Skylake) Edge v89.0.774.76 381 B/s 4.88%

TABLE 5.2: Spook.js Performance on Brave and Edge.

Finally, we test the experimental implementation of site isolation on Firefox (Mozilla
Foundation, 2022) using Firefox Nightly version 89.0al (build date: 12 April 2021). Similar
to Chrome, Firefox Nightly 89.0a1 exhibits consolidation via tab pressure and window.open.
However, owing to significant differences in the JavaScript engine, we leave a Firefox port
of Spook.js to future work.

5.5 Countermeasures

Separating User JavaScript. Spook.js depends on consolidating two endpoints of the
same website into a single process — one executing attacker-controlled JavaScript and the
other containing sensitive data. Website operators can protect users from Spook.js by
serving these endpoints from different domains. Although this approach is commonly used
to separate user content from operator content, it falls short when user-provided JavaScript
is served from the same domain as other sensitive user data. We propose extending this
strategy by serving user-provided JavaScript from one domain while hosting all other user-
provided content on a separate domain. This countermeasure can be readily implemented
by website operators to protect users from JavaScript-based attacks such as Spook.js.

Origin Isolation. Browser vendors could align the definition of security domains used
in site isolation with those used by the rest of the web. A straightforward approach is
to consider the entire domain name for site isolation rather than relying on the eTLD+1.

102 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

However, this origin-based isolation may break a significant number of websites, as 13.4%
of page loads modify their origin via document .domain (Reis et al., 2019).

The Public Suffix List (PSL). Maintained by Mozilla, the PSL (Mozilla Foundation, 2020)
is a list of Effective Top Level Domain Names, domain names under which users can
directly register subdomains. Examples of entries include github.io and, thanks to this
work, bitbucket.io (Atlassian, 2021). We recommend web services that allow users to
register subdomains to add their domains to the PSL to mitigate the risk of related-domain
attacks such as Spook.js. In particular, our attacks on bitbucket.io and tumblr.com were
only possible because both domains were absent from the PSL. Notably, Tumblr’s absence
from the PSL was previously reported by Squarcina et al. (2021).

Strict Extension Isolation. As a result of our findings, Google deployed strict exten-
sion isolation (Chromium Project, 2021a). This feature prevents consolidation between
extensions and has been enabled in Chrome 92 and later.

Speculation Hardening. At a high level, Spook.js is a type of confusion attack that
exploits transient execution beyond an object’s type check. A simple, though incomplete,
countermeasure is to prevent such transient execution by inserting an 1fence instruction
immediately after all type checks.

A similar technique is pointer poisoning (Pizlo, 2018), which masks each data pointer
with a random constant unique to the object’s type. This technique does not prevent mis-
prediction of the type check, but will poison the resulting pointer and prevent exploitable
transient execution.

5.6 Limitations

Targets. To execute Spook.js, the attacker must upload JavaScript onto the target website’s
domain. These attacks are known as related-domain attacks (Squarcina et al., 2021; Bortz
et al,, 2011). Although the chapter has illustrated numerous attack scenarios in which
Spook.js can be applied, it cannot be applied across unrelated domains.

Architectures. Due to the non-inclusive cache architecture of AMD Zen processors, our
LLC eviction strategy fails on AMD systems. We leave the task of demonstrating Spook.js
on non-inclusive caches, such as AMD Zen microarchitectures, to future work.

github.io
bitbucket.io
bitbucket.io
tumblr.com

5.7. Conclusion 103

Firefox. Similarly to Chrome, Firefox’s site isolation implementation also consolidates
websites based on the same-site policy. Although we successfully demonstrated consolid-
ation on Firefox, its JavaScript engine differs significantly from Chrome’s. We leave the
task of demonstrating Spook.js on firefox to future work.

5.7 Conclusion

In this chapter, we present Spook.js, a novel transient-execution attack capable of recov-
ering sensitive information from other websites despite Chrome’s site isolation counter-
measures. Similar to other related-domain attacks (Bortz et al., 2011; Squarcina et al.,
2021), Spook.js exploits the gap between the policy used by the countermeasure (the
same-site policy) and the policy used by the broader web ecosystem (the same-origin
policy). We demonstrate several realistic attack scenarios in which we extract sensitive
data, including usernames and passwords, from multiple popular web services, browser
extensions, and the browser itself. Furthermore, we show that Spook.js can be executed
on Chromium-based browsers, such as Brave and Edge, and that Firefox suffers from the
same core vulnerability as Chrome.

In response to our work, Google has deployed strict extension isolation, and several
popular web services have added themselves to the PSL. While these countermeasures are
not as comprehensive as origin isolation or speculation hardening, they were deployed
rapidly and with zero impact on compatibility while mitigating the threat posed by
Spook.js. Moreover, Google introduced support for configuring how Chromium isolates
websites, including an option to enable origin isolation (Chromium Project, 2021b,a).

The next chapter departs from the focus on web browsers while continuing the broader
theme of evaluating countermeasures by mounting attacks.

104 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

Hello!

My name is Spooky, and | am a professional ghost at the Pwnage Corporation.

Services

Whether you want to haunt your friends, family, and loved ones as a joke, or
haunt an enemy of yours more seriously, you have found the right spot. We
offer top-quality services such as creaking doors, cupboards falling down
suddenly, and spiritual beings floating above your bed, all at very affordable
prices.

Disclaimer

Contact me; To everyone else who visits this webpage: this is a dummy personal website
made to test website fingerprinting. We do not actually haunt people)

(111) 234-5555
Resume
Linkedin

spooky@mailservercom

test@i7-7600u-16g-ubuntul804:~/Documentss$ st
rings spooky.bin | egrep "Spooky McSpookface
|[LinkedIn|Resume"

®

4
test@i7-7600u-16g-ubuntu1804:~/Documentss [

F1GURE 5.3: Results — Bitbucket — Contents:
(Top) Example of a victim webpage. (Bottom) Leakage of parts of the victim
webpage’s text. Bitbucket has since mitigated Spook.js.

5.7. Conclusion 105

test@i7-7600u-16g-ubuntul804:~/Documents$ xxd -c
48 -s Oxe0 url-1.bin | head -1 | python3 xxd-asci
i-only.py

https://spectrevictim.b.tbucket.io/.].+.
test@i7-7600u-16g-ubuntul804:~/Documents$ xxd -c
48 -s 0x20 url-2.bin | head -1 | python3 xxd-asci
i-only.py

...https://les3knovnatta#tker.b.tbucket.io/..+..
test@17-7600u-16g-ubuntul804:~/Documents$ xxd -c
48 -s 0x10 url-3.bin | head -1 | python3 xxd-asci
i-only.py
B...#. .https:/.jnownattacker.bitbucket.io/..+..
test@i7-7600u-16g-ubuntul8e4:~/Documentss i

FIGURE 5.4: Results — Bitbucket — Open Subdomains:
Leakage of currently open bitbucket.io subdomains. Parts corresponding to
the URLs have been highlighted. Bitbucket has since mitigated Spook.js.

bitbucket.io

106 Chapter 5.

Mounting a Transient Execution Attack on Modern Browsers

Contact Information

Current Home Address
1 Specire Ave
Browser, JS 12345

Current Home Phone
(111) 234-5555

Permanent Address
89 Chromium Dr
Pwnage, JS 67890

Email Address
spooky@mailserver.com

test@i7-7600u-16g-ubuntu1804:~/Desktop$ cat
sensitivedom.bin | sed -r '/"\s*$/d' | head

-28 | tail

-9

Current Home Adress
Permanent Address

1 Spectre AveBrowser, 1S 15

89 Chromium DrPwnage,]S 6688

Current Ho!&Phonm

Email Address

(111 234-5555

spooky@mailserver.om
test@i7-7600u-16g-ubuntu1804:~/Desktops |

FIGURE 5.5: Results — University — Contact Information: (Top) Con-
tact information page displayed of the university website, edited to show
anonymized information. (Bottom) Leakage of contact information using

Spook.js.

5.7. Conclusion 107

Direct Deposit Details

#;I;::unt Routing Number Account Number Flat Amount Edit
Checking 12341234 432156789999 4

test@i7-7600u-16g-ubuntul804:~/Documentss$ st
rings directdeposit.bin | sed '/[?0-9.]/d; /
\..*\./d’

432156789999
12341234

test@i7-7600u-16g-ubuntu1804:~/Documentss |

FIGURE 5.6: Results — University — Bank Details:
(Top) The direct deposit settings page of the university website, edited to
show anonymized information. (Bottom) Leakage of bank account and
routing number.

108 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

& pocuser

test@i7-7600u-16g-ubuntu1804:~/Documents$ xxd -c
48 chrome_password_manager | grep --color=never p

oc | python3 xxd-ascii-only.py
a.pocuser SN LA . .
7 .ppocpassword321#woK.Q...Y .
test@i7-7600u-16g-ubuntu1804:~/Documentss |

FIGURE 5.7: Results — Chrome Password Manager — Passwords:
(Top) Credential autofill by Chrome’s password manager into the univer-
sity’s login page. (Bottom) Leaked credentials using Spook.js.

5.7. Conclusion 109

& pocuserlp 2

] LastPass -«
ﬂ LTI | DA CEWORNE

- . o
. pocuserlp

. = IEEENE 0 gmiail.com

By your use of these rej In
Resources (SPG .

test@i7-7600u-16g-ubuntul804:~/Documents$ xxd -c 4
8 lastpass_multiple_users | cut -c 130-200 | grep
-Al --color=never user

rue,"usernames” . P" It ognail.com", "po.

tserl®.,"pocextra.rer"]}]1},"fra.eID":23}
test@17-7600u-16g-ubuntu1804:~/Documentss |

FIGURE 5.8: Results — LastPass — Passwords:
(Top) Multiple accounts managed by LastPass. (Bottom) Using Spook.js to
leak the list of associated accounts.

110 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

test@i7-7600u-16g-ubuntul804:~/Downloadss$
strings oneclick-username.bin | grep poc

user
test@i7-7600u-16g-ubuntu1804:~/Downloadss$

strings oneclick-password.bin | grep poc
p password321
test@i7-7600u-16g-ubuntu1804:~/Downloadss

FIGURE 5.9: Results — Hidden Frame:
Extracted credentials from a hidden frame embedded in the page.

Name on card |attacker 1] |
Card Number |1234432123413421 |
CVC |1234
Expiry |02/24 |
| Submit |

test@i7-7600u-16g9-ubuntul804:~/Documents$ xxd -c 4
8 1lp _credit _card.bin | cut -c 130-200 | sed -n '2,
S5p'

:Credit Card.La.fuage:en-US.Name on Card:attack.

r.Type:credit.Number:1234432123.13421.Security C

ode:1234.Start . te:March,2020.Expiration Date:.

dbruary,2024.Notes:..% ..ERROR: AES mobil
test@i7-7600u-16g-ubuntu1804:~/Documentss |

FIGURE 5.10: Results — LastPass — Credit Cards:
(Top) Credit card information populated by LastPass. (Bottom) Using
Spook.js to leak credit card information.

5.7. Conclusion 111

tumblr

Make stuff, look at stuff, talk
about stuff, find your people.

pocuser@example.com e

SR RRRRRRRRRS

Forgot your password?

test@i7-7600u-16g-ubuntu1804: $ xxd -c 64 tumblr-crede
ntials.bin | head -3 | tail -2 . /Xxxd-ascii-only.py
OT.pocpassword321 i
.pocuser@example.com
test@l7-7600u-16g-ubuntul80g:

FIGURE 5.11: Results — Tumblr — Password:
(Top) Tumblr’s login page with credentials autofilled by LastPass. (Bottom)
Recovered username and password.

112 Chapter 5. Mounting a Transient Execution Attack on Modern Browsers

Blogs

V spookjstest
spookjstest
ﬂ otherblogone
otherblogone
otherblogtwo
otherblogtwo

test@i7-7600u-16g-ubuntul804:~/Documents$ xxd -c 64 tumblr-allbl
ogs.bin | head -5 | tail -4 | python3 xxd-ascii-only.py
test" ,"title" :"spookjstest"}, {"nam
e" :"otherblogo.e" ,"title" :"otherbl
2cD...@%...Db {
tle&.uot; :"othErblogtwo&qu.t;..,f.A0. ‘reca®tcha"p.ht; :"
test@i7-7600u-16g-ubuntu1804:~/Documentss |

FIGURE 5.12: Results — Tumblr — Open Subdomains:
(Top) The list of all blogs owned by an account, which is visible only to
the owner of the account. (Bottom) Recovered list with blog names in

highlights.

5.7. Conclusion 113

§ L
FIGURE 5.13: Results — Google Photos:

(Left) An image of an antelope uploaded to Google Photos. (Right) A recon-
structed image from the leaked data.

test@i7-7600u-16g-ubuntul804:~/Documents$ xxd -c 4
8 lastPassMaliciousExtension | cut -c 130-200 | se
d -n '16,19p'
\tpost\tmethod\.","..vrunt_pv_field name":"",".n
cnu.":0, timestamp":16185141854n1,"uSer.ame":"Po
cLPUser","passw8..>:.PocLPPassword","t..#:"wiki.
edi..org.}..u DR 0 ac@ (e
test@i7-7600u-16g-ubuntu1804:~/Documents$ [

test@i7-7600u-16g-ubuntul804:~/Documents$ xxd -c

48 -s 0xa® LastPassMasterPassword.bin | head -1 |
python3 xxd-ascii-only.py

..;$.3q....0lLastPass.assword1l

test@i7- 7600u- 16g-ubuntu1804: ~/Documents$ [|

FIGURE 5.14: Results — Lastpass — Master Password:
(Top) Recovered login credential of wikipedia.org populated by Last-
Pass. (Bottom) Recovered master password of LastPass’ vault (originally
LastPassPasswordi#).

115

Chapter 6

Security Type Systems and Transient
Execution

As demonstrated in previous chapters, the subtle behaviours of modern processors can be
exploited to compromise software security. Fortunately, various techniques have been
proposed to mitigate such threats. One prominent approach involves modifying programs
to ensure identical microarchitectural behaviour regardless of input. Known as constant-
time programming, this method makes microarchitectural observations uninformative to
potential adversaries by ensuring these observations remain consistent across all program
inputs.

Unfortunately, developing constant-time software presents significant challenges (Jan-
car et al,, 2022). To help overcome these difficulties, several tools have been created
to assist in developing constant-time software. These tools can verify whether a pro-
gram is constant-time and often automatically transform portions of the program into
constant-time variants.

The FaCT compiler (Cauligi et al., 2019) is an example of such a tool. It employs a
constrained information-flow security type system that ensures secret-typed variables are
never used in ways that affect the program’s observable behaviour. While these systems
are effective, they can be overly restrictive. For example, they prohibit operations such
as network transmission or file storage, even when these operations are safe to perform.
Moreover, because the results of operations involving secret variables must be assigned
to secret variables, this restriction can rapidly propagate throughout the program.

The standard solution to this problem is to introduce a declassify operation. This
operation serves as an annotation inserted by the developer to assert that a value stored

116 Chapter 6. Security Type Systems and Transient Execution

in a secret variable can be safely stored in a public variable, enabling its use in otherwise
forbidden operations. While it can shown that introducing declassify operations is safe
under sequential execution, their safety under out-of-order execution remains less clear.

uint8_t otp_and_decode(
secret uint8_t m,
secret uint8_t k
) {
secret uint8_t ¢ = m;
for (uint8_t i = 0; i < 8; i++) {
c =k & (1 << 1i);
}

public uint8_t d = declassify(c);
return decode[d];

LISTING 6.1: One-Time Pad Example:
One-time pad into table-based decoder. Skipping the for loop (due to mis-
speculation) directly leaks the secret m.

Consider the program in Listing 6.1. In this example, a secret message m is encrypted
using a bitwise one-time pad, and the resulting ciphertext c is passed into a table-based
decoder. Because the ciphertext depends on the secret, c is classified as secret and must
be declassified before it can be decoded. With the assumption that the one-time pad is
uniformly distributed, the program does not leak m under normal execution.

However, if the loop were not executed at all, then the program would trivially leak m
via c. While such behaviour is impossible under the sequential execution model, since the
loop must be executed before the declassify operation can be executed, on real hardware
an adversary with control over branch prediction could trick the processor into skipping
the loop body entirely.

The remainder of this chapter explores the interaction between declassify operations
and out-of-order execution, culminating in a PoC attack targeting several implementations

6.1. AES Background 117

of the AES encryption algorithm. Unlike prior approaches which focus on enabling ad-
versaries to leak data from unintended locations, such as out-of-bounds memory accesses
or type-confused structures, this attack leaks values from the intended location but at an
unintended time.

The rest of this chapter provides further background for AES, describes how the PoC
attack extracts partial ciphertexts from AES, then ends with a demonstration of the attack
on the OpenSSL implementation of AES.

6.1 AES Background

The Advanced Encryption Standard (AES) is a symmetric block cipher that operates on
128-bit blocks and supports key sizes of 128, 192, or 256 bits. AES employs a substitution-
permutation network structure, executing multiple rounds of transformations on the
plaintext (input) to produce the final encrypted ciphertext (output). The number of rounds
depends on the key size, with 10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and
14 rounds for 256-bit keys.

AES Round Overview. The 128-bit AES state is represented as a 4 x 4 byte matrix and is
transformed in each round through four operations: SubBytes, ShiftRows, MixColumns,
and AddRoundKey. In the final round the MixColumns operation is omitted.

The SubBytes operation replaces each byte in the state by another byte using a
predefined substitution table (S-box). ShiftRows circularly rotates the bytes in row i to left
by i positions. MixColumns applies a linear transformation to each column, interpreting
the bytes as elements of GF(28). Finally, AddRoundKey performs bitwise exclusive OR
(XOR) between the state and a round-specific key derived from the original key.

AES-NI. The Advanced Encryption Standard New Instructions (AES-NI) is an extension
of the x86-64 instruction set that implements the core operations of AES encryption
in hardware. It provides improved performance and enhanced security compared with
software-based implementations. For AES encryption, AES-NI includes two primary
instructions: AESENC, which performs a full AES round, and AESENCLAST, which performs
the final round.

118 Chapter 6. Security Type Systems and Transient Execution

6.2 PoC Attack

The core idea behind the attack is to trick the processor into applying an incorrect number
of AES rounds to the plaintext. We do this by training the branch predictor to mispredict
branches that control the number of rounds. Listing 6.2 shows a vulnerable implementation
of AES. key holds all of the round-specific keys along with the number of rounds to apply
to the plaintext. The goal of the attack is to control the branches on Lines 18 and 21 to
control the number of rounds applied, then leak and analyse the resulting improperly
encrypted ciphertext to recover the key.

Step 1: Branch Predictor Training. Listing 6.3 presents the pseudocode for the attack.
Lines 2 and 3 create two AES keys, one is used for training and the other represents a
‘secret’ key that is a stand-in for a key that the attacker does not have access to. Lines 5-7
repeatedly calls encrypt using the training key. Because the training key is a 128-bit key,
encrypt will apply 10 rounds to the plaintext.

In practice, attackers may employ alternative techniques to train the processor, such
as exploiting aliasing within the branch prediction unit. For the purposes of this PoC, we
use the simple technique of reusing the encryption algorithm for training.

Step 2: Triggering Misspeculation. After training the processor, Line 9 flushes secret _
key.rounds from the cache. This field controls the number of rounds to apply to the
plaintext. Flushing it from the cache delays evaluation of branch conditions within
encrypt until the field is returned from memory. Then Line 10 calls encrypt with the
secret key.

As the secret key is a 192-bit key, encrypt should apply 12 rounds to the plaintext.
However, because of the previous training step, the processor incorrectly applies 10 rounds
to the plaintext. The branch that controls the number of rounds (Listing 6.2 Line 18) is
predicted as not taken, when it should be taken.

Moreover, because key.rounds has been flushed from the cache, the speculation
window is large enough for control flow to leave encrypt and return back into the attack
where Line 12 can leak the resulting reduced-round ciphertext via a side channel.

Step 3: Recovering the Reduced-Round Ciphertext. Eventually, the processor will
detect the misprediction and squash the resulting incorrect execution. It restarts execution

6.2. PoC Attack 119

back at the branch that controls the number of rounds (Listing 6.2 Line 18) and applies
the correct number of rounds then returns back into the attack.

Line 12 is executed again, leaking the resulting correctly encrypted ciphertext. This is
simply an artefact of explanation, this is not a necessary step of the attack. In a real attack,
the attacker could construct an attack which only leaks the reduced-round ciphertext.

Finally, Line 14 recovers the leaked reduced-round ciphertext using a side channel. We
use the Flush+Reload technique (Yarom and Falkner, 2014) as the side-channel technique
for simplicity. Several other side channels have been demonstrated in the context of
transient-execution attacks (Bhattacharyya et al., 2019; Google, 2021; Amos et al., 2019;
Ren et al., 2021), so the choice of channel is not limited to Flush+Reload.

Attack Accuracy. We test two implementations, both written in FaCT: one compiled with
the default LLVM back-end and the other with LLVM configured to enable Speculative
Load Hardening (SLH). We repeat the attack 1,000 times against each victim, recording
whether the reduced-round ciphertext is correctly recovered each time. On average, the
attack succeeds with a probability exceeding 95%, regardless of the victim.

OpenSSL Implementations. We further demonstrate leakage from two AES implement-
ations provided by OpenSSL.

The first implementation uses T-tables to perform the round function and follows
the same general structure as Listing 6.2 but employs precomputed tables for the round
transformations. Although T-table implementations are known to be vulnerable to cache
attacks (Osvik et al., 2006), our PoC does not exploit this particular vulnerability; instead,
it uses the same strategy described earlier. The PoC succeeds as expected when SLH is
disabled, but enabling SLH prevents the leak by poisoning the table accesses executed in
the final round.

The second implementation uses AES-NI instructions and is written in x86-64 assembly.
The implementation uses AESENC within a loop and invokes AESENCLAST for the final
round. The number of iterations of the loop is determined by key.rounds. Because the
loop can terminate after any number of iterations, we train the loop to terminate after a
single iterations, resulting in a two-round encryption (the last round is unconditionally
applied after the loop). The PoC succeeds when SLH is disabled. Since LLVM cannot
apply SLH to assembly code, we do not test this implementation with SLH enabled.

120 Chapter 6. Security Type Systems and Transient Execution

6.3 Conclusion

This chapter demonstrated a proof-of-concept attack on declassification. Specifically, the
gap between the sequential execution model used by tooling and the out-of-order execu-
tion model used by hardware enables adversaries to leak sensitive data from otherwise
protected code.

Fortunately, several factors limit the practicality of these attacks. While intra-process
isolation remains an active research area (Vahldiek-Oberwagner et al., 2019; Kirth et al.,
2022; Voulimeneas et al., 2022), some high-profile applications appear to be moving in the
opposite direction (Reis et al.,, 2019). Moreover, it is unclear whether such an attack could
be performed across process boundaries.

The accompanying paper (Shivakumar et al., 2023) provides the remaining context,
full theoretical analysis, methods to recover the key, and proposed countermeasures to
mitigate this issue. This chapter contains only the work that I contributed to the paper.

20

21

22

23

24

25

26

27

6.3. Conclusion

121

function encrypt(
AES_STATE plaintext,
AES_STATE ciphertext,
AES_KEY key
) 1
AES_STATE* key = key.round_keys

AES_STATE state = xor(plaintext, *key++)
state = AESENC(state, *key++)
state = AESENC(state, x*key++)
state = AESENC(state, xkey++)
state = AESENC(state, x*key++)
state = AESENC(state, *key++)
state = AESENC(state, *key++)
state = AESENC(state, x*key++)
state = AESENC(state, *key++)
state = AESENC(state, x*key++)
if (key.rounds > 10) {
state = AESENC(state, *key++)
state = AESENC(state, *key++)
if (key.rounds > 12) {
state = AESENC(state, x*key++)
state = AESENC(state, *key++)

}
return AESENCLAST(state, *key++)

L1sTING 6.2: Protected AES Implementation:
Implementation of unrolled AES encryption. The aes_round and
aes_final_round functions are compiler intrinsics that map to the AESENC

and AESENCLAST x86 instructions respectively.

122 Chapter 6. Security Type Systems and Transient Execution

function attack() {
training_key = create_aes128_key();
secret_key = create_aes192_key();

for (int i = 0; i < 127; i++) {
encrypt (plaintext, training_key);
}

flush(secret_key.rounds) ;
ciphertext = encrypt(plaintext, secret_key);

sidechannel_send(ciphertext) ;

return sidechannel_recv();

LisTING 6.3: Pseudocode for AES Attack:
Pseudocode of our attack on AES. For clarity, we show training and victim
execution as separate steps. In practice, our code does both of these steps
in the same loop, using constant-time select to switch between inputs.

123

Chapter 7

Conclusion

This thesis examines the effectiveness of deployed microarchitectural side-channel coun-
termeasures.

Chapter 3 investigates the root causes of leakage in coarse-grained website finger-
printing attacks. Chapter 4 introduces Pixel Thief- a practical cache-based pixel-stealing
attack that recovers pixels faster than any previous timing-based approach. Chapter 5
presents Spook.js— a practical transient execution attack capable of leaking secrets despite
the presence of countermeasures. Finally, Chapter 6 describes a PoC demonstrating how
transient execution can subtly undermine security type systems.

These attacks demonstrate that at the time of writing, current countermeasures are
insufficient to fully protect users from microarchitectural threats. However, this does not
imply that the countermeasures have been ineffective. On the contrary, the countermeas-
ures deployed by browser vendors have significantly limited the precision and impact of
the attacks presented in this thesis, making them less potent than they might otherwise
have been.

For example, Pixel Thief bypasses cross-origin isolation but only by shifting to an
adversarial model that requires victim interaction. Similarly, Spook.js circumvents mitiga-
tions for transient-execution attacks but only under a related-domain adversarial model.
These shifts in the adversarial model are a direct consequence of previously deployed
countermeasures and reflect a weakening of the adversary’s capabilities to mount effective
attacks — a trend that appears to continue with the countermeasures deployed to mitigate
Pixel Thief and Spook.js.

In response to Spook.js, Google deployed several targeted mitigations into their

124 Chapter 7. Conclusion

Chrome browser. The browser now correctly isolates extensions into their own pro-
cesses and provides configurable options for controlling how websites are isolated across
processes. However, Chrome still defaults to isolating at the site level, so we recommend,
as an interim measure, that operators of vulnerable websites add their domains to the
PSL. The PSL changes how the same-site policy is applied, so that subdomains are treated
as entirely separate websites. Browser countermeasures that use the same-site policy,
including site isolation, will be applied to these subdomains as the operators intended.

Recently deployed cookie isolation features such as Total Cookie Protection and
Intelligent Tracking Prevention also affect Pixel Thief and Spook.js. These features aim to
prevent user tracking by isolating cookies based on whether a website is loaded normally
or embedded within an iframe on a third-party site. A side effect of these features is that
iframe-based attacks are served fresh instances of websites without any cookies. Without
any cookies, the iframe will likely not contain any of the victim’s sensitive information,
defeating iframe-based attacks.

Despite this ongoing progress, the state of countermeasures remains far from ideal.
Firstly, Browser vendors must balance security with other competing concerns, including
compatibility and performance, and may not be able to implement strong countermeasures.
For instance, browsers still allow cross-origin application of filters, despite their security
risk, because existing websites rely on this capability. Similarly, browsers have begun to
adopt website isolation, but continue to use the same-site policy instead of the same-origin
policy for compatibility and performance reasons.

Moreover, the implementations of these countermeasures may themselves be flawed.
For example, Kim et al. (2023) uncovered a flaw in Safari that allowed an adversary to
consolidate arbitrary websites into the same process undermining its isolation counter-
measures entirely. Apple has since patched this vulnerability; however it raises questions
about whether similar vulnerabilities could exist.

Finally, countermeasures are incomplete. Consider the coarse-grained website-
fingerprinting attacks described in Chapter 3. It is simply unclear how a viable counter-
measure could ever mitigate such attacks.

Despite these limitations in countermeasures, there is room for optimism in this space.
The existing countermeasures were very effective at limiting the capabilities of Pixel Thief
and Spook.js, and the newly deployed countermeasures only further limit their capability.
Importantly, these countermeasures have been deployed and are now in active use.

Chapter 7. Conclusion 125

I urge the reader not to be discouraged by these limitations, but to take them as a call
to action to improve the security of the web. Finally, I would like to end the thesis by
thanking you, the reader, for your time.

— Cheers, Sioli

127

Bibliography

Onur Aciicmez and Jean-Pierre Seifert. Cheap hardware parallelism implies cheap security.
In FDTC, pages 80-91, 2007. doi: 10.1109/fdtc.2007.16.

Onur Aciigmez, Cetin Kaya Kog, and Jean-Pierre Seifert. Predicting secret keys via branch
prediction. In CT-RSA, pages 225-242, 2006. doi: 10.1007/11967668_15.

Onur Aciigmez, Shay Gueron, and Jean-Pierre Seifert. New branch prediction vulnerabil-
ities in OpenSSL and necessary software countermeasures. In IMACC, pages 185-203,
2007. doi: 10.1007/978-3-540-77272-9_12.

Alejandro Cabrera Aldaya and Billy Bob Brumley. HyperDegrade: From GHz to MHz
effective CPU frequencies. In USENIX Security, pages 2801-2818, 2022.

Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida Garcia,
and Nicola Tuveri. Port contention for fun and profit. In IEEE SP, pages 870-887, 2019.
doi: 10.1109/sp.2019.00066.

Thomas Allan, Billy Bob Brumley, Katrina E. Falkner, Joop van de Pol, and Yuval Yarom.
Amplifying side channels through performance degradation. In ACSAC, pages 422-435,
2016. doi: 10.1145/2991079.2991084.

Ben Amos, Niv Gilboa, and Arbel Levy. Spectre without shared memory. In SAC, pages
1944-1951, 2019. doi: 10.1145/3297280.3297470.

Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner, and
Hovav Shacham. On subnormal floating point and abnormal timing. In IEEE SP, pages
623-639, 2015. doi: 10.1145/3243734.3243766.

128 BIBLIOGRAPHY

Marc Andrysco, Andres Notzli, Fraser Brown, Ranjit Jhala, and Deian Stefan. Towards
verified, constant-time floating point operations. In CCS, pages 1369-1382, 2018. doi:
10.1145/3243734.3243766.

Atlassian. Spook.js: speculative execution resulting in cross-domain browser inform-
ation leakage, 2021. URL https://community.atlassian.com/t5/ Trust-Security-Articles/
Spook-js-speculative-execution-resulting-in-cross-domain-browser/ ba-p/ 1799650.

Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Carlos Daniel Luna, and David Pichar-
die. System-level non-interference for constant-time cryptography. In CCS, pages
1267-1279, 2014. doi: 10.1145/2660267.2660283.

Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessandro Sorni-
otti, Babak Falsafi, Mathias Payer, and Anil Kurmus. SMoTherSpectre: Exploiting
speculative execution through port contention. In CCS, pages 785-800, 2019. doi:
doi/10.1145/3319535.3363194.

Andrew Bortz, Adam Barth, and Alexei Czeskis. Origin cookies: Session integrity for web
applications. W2SP, 2011.

Brave. The brave browser. URL https://brave.com/.

Ernie Brickell, Gary Graunke, Michael Neve, and Jean-Pierre Seifert. Software mitigations
to hedge AES against cache-based software side channel vulnerabilities, 2006.

William J. Buchanan, Scott Helme, and Alan Woodward. Analysis of the adoption of
security headers in HTTP. In IET Information Security, pages 118-126, 2018. doi:
10.1049/iet-ifs.2016.0621.

Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touching from a distance:
Website fingerprinting attacks and defenses. In CCS, pages 605-616, 2012. doi: 10.1145/
2382196.2382260.

Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina Minkin,
Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, Jo van Bulck, and Yuval
Yarom. Fallout: Leaking data on Meltdown-resistant CPUs. In CCS, pages 769-784,
2019. doi: 10.1145/3319535.3363219.

https://community.atlassian.com/t5/Trust-Security-Articles/Spook-js-speculative-execution-resulting-in-cross-domain-browser/ba-p/1799650
https://community.atlassian.com/t5/Trust-Security-Articles/Spook-js-speculative-execution-resulting-in-cross-domain-browser/ba-p/1799650
https://brave.com/

BIBLIOGRAPHY 129

Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S. Wahby, John
Renner, Benjamin Grégoire, Gilles Barthe, Ranjit Jhala, and Deian Stefan. FaCT: A DSL
for timing-sensitive computation. In PLDI, pages 174-189, 2019. doi: 10.1145/3314221.
3314605.

Craig Chambers, David Ungar, and Elgin Lee. An efficient implementation of SELF a
dynamically-typed object-oriented language based on prototypes. ACM SIGPLAN
Notices, pages 49-70, 1989. doi: 10.1145/74877.74884.

Chromium Project. SVG filter timing attack, 2013. URL https:// bugs.chromium.org/p/
chromium/issues/ detail?id=251711.

Chromium Project. Timing attack on denormalized floating point arithmetic in SVG filters
circumvents same-origin policy, 2016a. URL https://bugs.chromium.org/p/chromium/
issues/ detail?id=615851.

Chromium Project. window.performance.now does not support sub-millisecond precision
on Windows, 2016b. URL https://bugs.chromium.org/p/chromium/issues/detail?id=
158234#¢110.

Chromium Project. Cross-origin pixel reading and history sniffing via SVG filter timing
attack, 2017. URL https://bugs.chromium.org/ p/chromium/issues/ detail?id=686253.

Chromium Project. Protecting more with site isolation, 2021a. URL https://security.
googleblog.com/2021/07/ protecting-more-with-site-isolation.html.

Chromium Project. Site isolation, 2021b. URL https:// www.chromium.org/Home/
chromium-security/ site-isolation/.

Chromium Project. Software rendering list, 2023. URL https://chromium.googlesource.
com/chromium/ src/ gpu/ +/refs/ heads/ main/ config/ software_rendering_list.json.

Jack Cook, Jules Drean, Jonathan Behrens, and Mengjia Yan. There’s always a bigger fish:
A clarifying analysis of a machine-learning-assisted side-channel attack. In ISCA, pages
204-217, 2022. doi: 10.1145/3470496.3527416.

https://bugs.chromium.org/p/chromium/issues/detail?id=251711
https://bugs.chromium.org/p/chromium/issues/detail?id=251711
https://bugs.chromium.org/p/chromium/issues/detail?id=615851
https://bugs.chromium.org/p/chromium/issues/detail?id=615851
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://bugs.chromium.org/p/chromium/issues/detail?id=686253
https://security.googleblog.com/2021/07/protecting-more-with-site-isolation.html
https://security.googleblog.com/2021/07/protecting-more-with-site-isolation.html
https://www.chromium.org/Home/chromium-security/site-isolation/
https://www.chromium.org/Home/chromium-security/site-isolation/
https://chromium.googlesource.com/chromium/src/gpu/+/refs/heads/main/config/software_rendering_list.json
https://chromium.googlesource.com/chromium/src/gpu/+/refs/heads/main/config/software_rendering_list.json

130 BIBLIOGRAPHY

Patrick Cronin, Xing Gao, Haining Wang, and Chase Cotton. An exploration of ARM
system-level cache and GPU side channels. In ACSAC, pages 784-795, 2021. doi:
10.1145/3485832.3485902.

Miles Dai, Riccardo Paccagnella, Miguel Gomez-Garcia, John McCalpin, and Mengjia Yan.
Don’t mesh around: Side-Channel attacks and mitigations on mesh interconnects. In
USENIX Security, pages 2857-2874, 2022.

L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of the smalltalk-80
system. In POPL, pages 297-302, 1984. doi: 10.1145/800017.800542.

Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Jump over ASLR:
Attacking branch predictors to bypass ASLR. In MICRO, pages 1-13, 2016. doi: 10.1109/
micro.2016.7783743.

Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Ponomarev.
BranchScope: A new side-channel attack on directional branch predictor. In ACM
SIGPLAN Notices, pages 693-707, 2018. doi: 10.1145/3296957.3173204.

The OWASP Foundation. The OWASP secure headers project. URL https://owasp.org/
www-project-secure-headers/ .

Enes Goktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and Cristiano Giuffrida.
Speculative probing: Hacking blind in the Spectre era. In CCS, pages 1871-1885, 2020.
doi: 10.1145/3372297.3417289.

Xun Gong, Nikita Borisov, Negar Kiyavash, and Nabil Schear. Website detection using
remote traffic analysis. In PETS, pages 58-78, 2012. doi: 10.1007/978-3-642-31680-7_4.

Google. Leaky page, 2021. URL https://leaky.page.

Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Translation leak-aside
buffer: Defeating cache side-channel protections with TLB attacks. In USENIX Security,
pages 955-972, 2018.

https://owasp.org/www-project-secure-headers/
https://owasp.org/www-project-secure-headers/
https://leaky.page

BIBLIOGRAPHY 131

David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games - bringing access-
based cache attacks on AES to practice. In IEEE SP, pages 490-505, 2011. doi: 10.1109/
SP.2011.22.

Berk Giilmezoglu. Xai-based microarchitectural side-channel analysis for website finger-
printing attacks and defenses. IEEE TDSC, pages 4039-4051, 2021. doi: 10.1109/tdsc.
2021.3117145.

Noam Hadad and Jonathan Afek. Overcoming (some) Spectre browser mitigations, 2018.
URL https://alephsecurity.com/2018/ 06/ 26/ spectre-browser-query-cache/.

Jamie Hayes and George Danezis. k-fingerprinting: A robust scalable website fingerprint-
ing technique. In USENIX Security, pages 1187-1203, 2016.

Scott Helme. Top 1 million analysis - june 2022. URL https://scotthelme.co.uk/
top-1-million-analysis-june-2022/.

Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website fingerprinting:
attacking popular privacy enhancing technologies with the multinomial naive-bayes
classifier. In CCSW, pages 31-42, 2009. doi: 10.1145/1655008.1655013.

Andrew Hintz. Fingerprinting websites using traffic analysis. In PETS, pages 171-178,
2002. doi: 10.1007/3-540-36467-6_13.

Urs Holzle, Craig Chambers, and David Ungar. Optimizing dynamically-typed object-
oriented languages with polymorphic inline caches. In ECOOP, pages 21-38, 1991. doi:
10.1007/bfb0057013.

Anxin Huang, Chen Zhu, Dewen Wu, Yi Xie, and Xiapu Luo. An adaptive method for
cross-platform browser history sniffing. In MAD Web, pages 1-7, 2020. doi: 10.14722/
madweb.2020.23006.

Lin-Shung Huang, Alexander Moshchuk, Helen J. Wang, Stuart Schecter, and Collin
Jackson. Clickjacking: Attacks and defenses. In USENIX Security, pages 413-428, 2012.

Intel. Intel 64 and IA-32 architectures software developer’s manual. URL https:// www.
intel.com/content/ www/ us/en/ developer/ articles/technical/intel-sdm.html.

https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/
https://scotthelme.co.uk/top-1-million-analysis-june-2022/
https://scotthelme.co.uk/top-1-million-analysis-june-2022/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

132 BIBLIOGRAPHY

Artur Janc and Lukasz Olejnik. Web browser history detection as a real-world privacy
threat. In ESORICS, pages 215-231, 2010. doi: 10.1007/978-3-642-15497-3_14.

Jan Jancar, Marcel Fourné, Daniel De Almeida Braga, Mohamed Sabt, Peter Schwabe, Gilles
Barthe, Pierre-Alain Fouque, and Yasemin Acar. “They’re not that hard to mitigate™:
What cryptographic library developers think about timing attacks. In IEEE SP, pages
632-649, 2022. doi: 10.1109/SP46214.2022.9833713.

Rob Jansen, Marc Juarez, Rafa Galvez, Tariq Elahi, and Claudia Diaz. Inside job: Applying
traffic analysis to measure tor from within. In NDSS, 2018. doi: 10.14722/ndss.2018.23261.

Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt. A critical
evaluation of website fingerprinting attacks. In CCS, pages 263-274, 2014. doi: 10.1145/
2660267.2660368.

David A Kaplan. Optimization and amplification of cache side channel signals, 2023.

Georgios Karopoulos, Dimitris Geneiatakis, and Georgios Kambourakis. Neither good nor
bad: A large-scale empirical analysis of HTTP security response headers. In TrustBus,
pages 83-95, 2021. doi: 10.1007/978-3-030-86586-3_6.

Daniel Katzman, William Kosasih, Chitchanok Chuengsatiansup, Eyal Ronen, and Yuval
Yarom. The gates of time: Improving cache attacks with transient execution. In USENIX
Security, 2023.

Jason Kim, Stephan van Schaik, Daniel Genkin, and Yuval Yarom. iLeakage: Browser-based
timerless speculative execution attacks on apple devices. In CCS, pages 2038-2052, 2023.
doi: 10.1145/3576915.3616611.

Kinsta. Global desktop browser market share. URL https://kinsta.com/
browser-market-share/ .

Vladimir Kiriansky and Carl A. Waldspurger. Speculative buffer overflows: Attacks and
defenses, 2018.

Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian Dabrowski, David Gens,
Yeoul Na, Stijn Volckaert, and Michael Franz. PKRU-Safe: Automatically locking down

https://kinsta.com/browser-market-share/
https://kinsta.com/browser-market-share/

BIBLIOGRAPHY 133

the heap between safe and unsafe languages. In EuroSys, pages 132-142, 2022. doi:
10.1145/3492321.3519582.

Ofek Kirzner and Adam Morrison. An analysis of speculative type confusion vulnerabilities
in the wild. In USENIX Security, 2021.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval
Yarom. Spectre attacks: Exploiting speculative execution. In IEEE SP, pages 1-19, 2019.
doi: 10.1109/SP.2019.00002.

David Kohlbrenner and Hovav Shacham. On the effectiveness of mitigations against
floating-point timing channels. In USENIX Security, pages 69-81, 2017.

Jakob Koschel, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. TagBleed: Breaking
KASLR on the isolated kernel address space using tagged TLBs. In EuroS&P, pages
309-321, 2020. doi: 10.1109/eurosp48549.2020.00027.

Robert Kotcher, Yutong Pei, Pranjal Jumde, and Collin Jackson. Cross-origin pixel stealing:
Timing attacks using CSS filters. In CCS, pages 1055-1062, 2013. doi: 10.1145/2508859.
2516712.

Butler W. Lampson. A note on the confinement problem. Communications of the ACM,
pages 613-615, 1973. doi: 10.1145/362375.362389.

Arturs Lavrenovs and F. Jesus Rubio Melon. HTTP security headers analysis of top one
million websites. In CyCon, pages 345-370, 2018. doi: 10.23919/CYCON.2018.8405025.

Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet Physics Doklady, pages 707-710, 1966.

Shuai Li, Huajun Guo, and Nicholas Hopper. Measuring information leakage in website
fingerprinting attacks and defenses. In CCS, pages 1977-1992, 2018. doi: 10.1145/
3243734.3243832.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders
Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike

134 BIBLIOGRAPHY

Hamburg. Meltdown: Reading kernel memory from user space. In USENIX Security,
pages 973-990, 2018.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-level cache side-
channel attacks are practical. In IEEE SP, pages 605-622, 2015. doi: 10.1109/SP.2015.43.

Andrea Mambretti, Alexandra Sandulescu, Alessandro Sorniotti, William Robertson, Engin
Kirda, and Anil Kurmus. Bypassing memory safety mechanisms through speculative
control flow hijacks, 2020.

Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann, Olivier Heen, and
Aurélien Francillon. Reverse engineering Intel last-level cache complex addressing using
performance counters. In RAID, pages 48-65, 2015. doi: 10.1007/978-3-319-26362-5_3.

MDN Contributors. The <fecomponenttransfer> svg filter primitive, a. URL https://
developer.mozilla.org/en-US/docs/ Web/SVG/ Element/ feComponent Transfer.

MDN Contributors. Privacy and the :visited selector, b. URL https:// developer.mozilla.org/
en-US/docs/ Web/ CSS/Privacy_and_the_:visited_selector.

MDN Contributors. Cross-origin-embedder-policy, 2024a. URL https:// developer.mozilla.
org/en-US/docs/ Web/ HT TP/ Headers/ Cross-Origin-Embedder-Policy.

MDN Contributors. Cross-origin-opener-policy, 2024b. URL https:// developer.mozilla.org/
en-US/docs/ Web/ HT TP/ Headers/ Cross-Origin-Opener-Policy.

Benedikt Meurer. An introduction to speculative optimization in v8, 2017. URL https:
// ponyfoo.com/ articles/ an-introduction-to-speculative-optimization-in-vs.

Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. CacheZoom: How SGX
amplifies the power of cache attacks. In CHES, pages 69-90, 2017. doi: 10.1007/
978-3-319-66787-4_4.

Mozilla Bug Tracker. SVG filter timing attack, 2013. URL https://bugzilla.mozilla.org/
show_bug.cgi?id=711043.

Mozilla Foundation. Public suffix list, 2020. URL https://publicsuffix.org/.

https://developer.mozilla.org/en-US/docs/Web/SVG/Element/feComponentTransfer
https://developer.mozilla.org/en-US/docs/Web/SVG/Element/feComponentTransfer
https://developer.mozilla.org/en-US/docs/Web/CSS/Privacy_and_the_:visited_selector
https://developer.mozilla.org/en-US/docs/Web/CSS/Privacy_and_the_:visited_selector
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://ponyfoo.com/articles/an-introduction-to-speculative-optimization-in-v8
https://ponyfoo.com/articles/an-introduction-to-speculative-optimization-in-v8
https://bugzilla.mozilla.org/show_bug.cgi?id=711043
https://bugzilla.mozilla.org/show_bug.cgi?id=711043
https://publicsuffix.org/

BIBLIOGRAPHY 135

Mozilla Foundation. Project Fission, 2022. URL https:// wiki.mozilla.org/Project_Fission.

Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael Abu-Ghazaleh. Rendered
insecure: GPU side channel attacks are practical. In CCS, pages 2139-2153, 2018. doi:
10.1145/3243734.3243831.

Nick Nguyen. The best firefox ever, 2017. URL https://blog.mozilla.org/en/ products/ firefox/
faster-better-firefox/.

Keith O’Neal and Scott Yilek. Interactive history sniffing with dynamically-generated
OR codes and CSS difference blending. In SP Workshops, pages 335-341, 2022. doi:
10.1109/spw54247.2022.9833863.

Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D. Keromytis.
The spy in the sandbox: Practical cache attacks in JavaScript and their implications. In
CCS, pages 1406-1418, 2015. doi: 10.1145/2810103.2813708.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: The
case of AES. In CT-RSA, pages 1-20, 2006. doi: 10.1007/11605805_1.

Rodney Owens and Weichao Wang. Non-interactive OS fingerprinting through memory
de-duplication technique in virtual machines. In IPCCC, pages 1-8, 2011. doi: 10.1109/
pccc.2011.6108094.

Riccardo Paccagnella, Licheng Luo, and Christopher W Fletcher. Lord of the ring(s): Side
channel attacks on the CPU On-Chip ring interconnect are practical. In USENIX Security,
pages 645-662, 2021.

Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. Website finger-
printing in onion routing based anonymization networks. In WPES, pages 103-114,
2011. doi: 10.1145/2046556.2046570.

Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas Zinnen, Martin
Henze, and Klaus Wehrle. Website fingerprinting at internet scale. In NDSS, 2016. doi:
10.14722/ndss.2016.23477.

Colin Percival. Cache missing for fun and profit. In BSDCan, 2005.

https://wiki.mozilla.org/Project_Fission
https://blog.mozilla.org/en/products/firefox/faster-better-firefox/
https://blog.mozilla.org/en/products/firefox/faster-better-firefox/

136 BIBLIOGRAPHY

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Mangard.
DRAMA: Exploiting DRAM addressing for cross-CPU attacks. In USENIX Security,
pages 565-581, 2016.

Filip Pizlo. What Spectre and Meltdown mean for WebKit, 2018. URL https:// webkit.org/
blog/ 8048/ what-spectreand-meltdown-mean-for-webkit/.

Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. Prime+Scope: Overcoming the
observer effect for high-precision cache contention attacks. In CCS, pages 2906-2920,
2021. doi: 10.1145/3460120.3484816.

Charles Reis, Adam Barth, and Carlos Pizano. Browser security: lessons from google
chrome. Communications of the ACM, pages 45-49, 2009. doi: 10.1145/1551644.1556050.

Charles Reis, Alexander Moshchuk, and Nasko Oskov. Site isolation: Process separation
for web sites within the browser. In USENIX Security, pages 1661-1678, 2019.

Xida Ren, Logan Moody, Mohammadkazem Taram, Matthew Jordan, Dean M. Tullsen,
and Ashish Venkat. I see dead pops: Leaking secrets via Intel/AMD micro-op caches.
In ISCA, pages 361-374, 2021. doi: ISCA52012.2021.00036.

Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom van Goethem, and Wouter Joosen.
Automated website fingerprinting through deep learning. NDSS, 2018. doi: 10.14722/
ndss.2018.23105.

Gustav Rydstedt, Baptiste Gourdin, Elie Bursztein, and Dan Boneh. Framing attacks on
smart phones and dumb routers: Tap-jacking and geo-localization attacks. In WOOT,
2010.

Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Mangard. Fantastic
timers and where to find them: High-resolution microarchitectural attacks in JavaScript.
In Financial Cryptography, pages 247-267, 2017. doi: 10.1007/978-3-319-70972-7_13.

Igor Sheludko and Santiago Aboy Solanes. Pointer compression in V8, 2020. URL https:
//v8.dev/blog/ pointer-compression.

https://webkit.org/blog/8048/what-spectreand-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectreand-meltdown-mean-for-webkit/
https://v8.dev/blog/pointer-compression
https://v8.dev/blog/pointer-compression

BIBLIOGRAPHY 137

Basavesh Ammanaghatta Shivakumar, Jack Barnes, Gilles Barthe, Sunjay Cauligi,
Chitchanok Chuengsatiansup, Daniel Genkin, Sioli O’Connell, Peter Schwabe, Rui Qi
Sim, and Yuval Yarom. Spectre declassified: Reading from the right place at the wrong
time. In IEEE SP, pages 1753-1770, 2023. doi: 10.1109/SP46215.2023.10179355.

Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal, Yossi
Oren, and Yuval Yarom. Robust website fingerprinting through the cache occupancy
channel. In USENIX Security, pages 639-656, 2019.

Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin, Yossi Oren, and
Yuval Yarom. Prime+Probe 1, JavaScript 0: Overcoming browser-based side-channel
defenses. In USENIX Security, pages 2863-2880, 2021.

Michael Smith, Craig Disselkoen, Shravan Narayan, Fraser Brown, and Deian Stefan.
Browser history re: visited. In WOOT, 2018.

Marco Squarcina, Mauro Tempesta, Lorenzo Veronese, Stefano Calzavara, and Matteo
Maffei. Can i take your subdomain? exploring Same-Site attacks in the modern web. In
USENIX Security, pages 2917-2934, 2021.

statista. Combined desktop and mobile visits to Tumblr.com from May 2019 to January 2021,
2021. URL https:// www.statista.com/ statistics/ 261925/ unique-visitors-to-tumblrcom/.

Paul Stone. Pixel perfect timing attacks with HTML5, 2013.

Hritvik Taneja, Jason Kim, Jie Jeff Xu, Stephan van Schaik, Daniel Genkin, and Yuval
Yarom. Hot pixels: Frequency, power, and temperature attacks on GPUs and ARM SoCs.
USENIX Security, 2023.

The HTTP Archive. The HTTP archive almanac. URL http://almanac.httparchive.org/en/
2022/ security.

Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler, Peter
Druschel, and Deepak Garg. ERIM: secure, efficient in-process isolation with protection
keys (MPK). In USENIX Security, pages 1221-1238, 2019.

https://www.statista.com/statistics/261925/unique-visitors-to-tumblrcom/
http://almanac.httparchive.org/en/2022/security
http://almanac.httparchive.org/en/2022/security

138 BIBLIOGRAPHY

Jo van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A practical attack framework
for precise enclave execution control. In SysTEX@SOSP, pages 4:1-4:6, 2017. doi:
10.1145/3152701.3152706.

Victor van der Veen and Ben Gras. DramaQueen: Revisiting side channels in DRAM. In
DRAMSec, 2023.

Stephan van Schaik, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Malicious
Management Unit: Why stopping cache attacks in software is harder than you think.
In USENIX Security, pages 937-954, 2018.

Pepe Vila, Boris Kopf, and José F. Morales. Theory and practice of finding eviction sets.
In IEEE SP, pages 39-54, 2019. doi: 10.1109/sp.2019.00042.

Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris Kopf. CacheQuery: Learning
replacement policies from hardware caches. In PLDI pages 519-532, 2020. doi:
10.1145/3385412.3386008.

Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn Volckaert. You shall not
(by)pass! practical, secure, and fast PKU-based sandboxing. In EuroSys, pages 266-282,
2022. doi: 10.1145/3492321.3519560.

Frederick M Waltz and John WV Miller. Efficient algorithm for Gaussian blur using
finite-state machines. In Machine Vision Systems for Inspection and Metrology VII, pages
334-341, 1998. doi: 10.1117/12.326976.

Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li. MeshUp: Stateless cache side-channel
attack on CPU mesh. In IEEE SP, pages 1506—1524, 2022. doi: 10.1109/SP46214.2022.
9833794.

Tao Wang and Ian Goldberg. Improved website fingerprinting on Tor. In WPES, pages
201-212, 2013. doi: 10.1145/2517840.2517851.

Yao Wang, Andrew Ferraiuolo, and G Edward Suh. Timing channel protection for a shared
memory controller. In HPCA, pages 225-236, 2014. doi: 10.1109/hpca.2014.6835934.

BIBLIOGRAPHY 139

Yingchen Wang, Riccardo Paccagnella, Elizabeth He, Hovav Shacham, Christopher W.
Fletcher, and David Kohlbrenner. Hertzbleed: Turning power side-channel attacks into
remote timing attacks on x86. In USENIX Security, 2022.

Yingchen Wang, Riccardo Paccagnella, Alan Wandke, Zhao Gang, Grant Garrett-Grossman,
Christopher W. Fletcher, David Kohlbrenner, and Hovav Shacham. DVFS frequently
leaks secrets: Hertzbleed attacks beyond SIKE, cryptography, and CPU-only data. In
IEEE SP, 2023. doi: 10.1109/SP46215.2023.10179326.

Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and Mohammad Abdullah Al Faruque.
Leaky DNN: Stealing deep-learning model secret with GPU context-switching side-
channel. In DSN, pages 125-137, 2020. doi: 10.1109/DSN48063.2020.00031.

Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy Campbell,
and Josep Torrellas. Attack directories, not caches: Side channel attacks in a non-
inclusive world. In IEEE SP, pages 888-904, 2019. doi: 10.1109/SP.2019.00004.

Yuval Yarom and Katrina Falkner. Flush+Reload: a high resolution, low noise, L3 cache
side-channel attack. In USENIX Security, pages 719-732, 2014.

Ruiyi Zhang, Taehyun Kim, Daniel Weber, and Michael Schwarz. (m)wait for it: Bridging
the gap between microarchitectural and architectural side channels. In USENIX Security,
2023.

Tao Zhang, Kenneth Koltermann, and Dmitry Evtyushkin. Exploring branch predictors
for constructing transient execution trojans. In ASPLOS, pages 667-682, 2020. doi:
10.1145/3373376.3378526.

141

Appendix A

Full Address Calculation

Alongside pointer compression, Chrome’s JavaScript engine employs a technique known
as value tagging (Sheludko and Solanes, 2020), which enables it to use the same 32-bit
space to represent both integers and pointers.

The least significant bit (LSB) is used to differentiate whether the 32-bit value encodes
an integer or a pointer to an object. For integers, the LSB is unset, and the remaining
31 bits represent the integer value. For pointers, the LSB is set, and the offset for any
access involving the pointer is decremented by one - this can be accomplished because
all objects are aligned to a 4-byte multiple. Operations on values then check the least
significant bit to determine whether the value is an integer or a pointer, removing the
need for indirection in integer operations or the need for an additional type-identifying
field.

Because Chrome does not use value tagging for internal fields, Chrome interprets the
external and base fields of Uint8Array as a regular 64-bit address and 32-bit integer.
In contrast, the fields of AttackerClass are value tagged and will be encoded as 31-bit
integers by shifting their values one bit to the left. When we trigger type confusion, values
that we stored in our AttackerClass object will be interpreted differently by Chrome.

We can partially resolve this difference in representation by reversing the effects
of the value encoding (shifting every value one bit to the right), but we cannot set the
least significant bit of any field. Since two fields are confused with external (the 64-bit
address), we cannot directly set bits 1 and 33 of the address.

We overcome this challenge by abusing how array indexing adds the external and
base fields to the index. Specifically, we set most of the address bits in external and use
base and the index to induce overflows to set bits 1 and 33 of the address. To set bit 1,

142 Appendix A. Full Address Calculation

we leave base as 0 and set index to 1. To set bit 33, we set base to OxFFFFFFFE and set
index to 2. To set both bits, we set base to OxFFFFFFFE and set index to 3.

	Contents
	List of Figures
	List of Listings
	List of Tables
	Statement of Originality
	Acknowledgements
	Introduction
	Analysing Coarse-Grained Side-Channel Leakage
	Mounting a High-Capacity Pixel-Stealing Attack
	Mounting a Transient-Execution Attack on Modern Browsers
	Transient-Execution Attacks on Security Type Systems
	Summary of Contributions
	Structure of Thesis
	Other Publications

	Background
	Microarchitecture
	Memory Caches
	Execution

	Microarchitectural Attacks
	Cache Timing Attacks
	Transient-Execution Attacks

	Browsers
	Same-Site Policy
	JavaScript
	Browser Architecture
	Uint8Array

	Browser-Based Attacks
	Website-Fingerprinting Attacks
	History Sniffing Attacks
	Pixel-Stealing Attacks

	Attributing Microarchitectural Leakage within Systems
	Analysis Overview
	Measurement Primitives
	Measurement Collection
	Experiment Setup

	Controlling Channel Contributions
	Intracore Contention
	Interrupt Handling
	Frequency Scaling
	Cache
	Validating Control
	Remaining Leakage

	Verifying Channel Contributions
	Intracore Contention
	Interrupt Handling
	Frequency Scaling
	Cache

	Measuring Channel Contributions
	Methodology
	Contributions of Channels

	Conclusion

	Mounting a High-Capacity Pixel-Stealing Attack
	Overcoming Cross-Origin Isolation
	Leaking Pixels
	The feComponentTransfer Filter
	Executing feComponentTransfer on the CPU

	Recovering Pixels
	Detecting Transmitter Communications
	Evaluation
	Varying Payload Size
	Identifying the Target Set
	System Noise

	Comparisons to Existing Works

	From Pixel Stealing to Text Stealing
	Text Stealing Results

	History Sniffing
	Straightforward History Sniffing
	Set Query Optimisation
	Experiment Description
	Results

	Countermeasures
	Limitations & Future Work
	Conclusions

	Mounting a Transient Execution Attack on Modern Browsers
	Spook.js: Mounting Transient Execution Attacks in Chrome
	Website Consolidation
	Breaking Address Space Isolation
	Avoiding Deoptimisation
	Obtaining Deep Speculation
	End-to-End Attack Performance

	Attack Scenarios
	Website Identification
	Recovering Sensitive Information
	Attacking Credential Managers
	Attacking Tumblr
	Exploiting Unintended Content Uploads

	Exploiting Malicious Extensions
	Attacking Additional Browsers
	Countermeasures
	Limitations
	Conclusion

	Security Type Systems and Transient Execution
	AES Background
	PoC Attack
	Conclusion

	Conclusion
	Full Address Calculation

