
SoK: Can We Really Detect Cache Side-Channel Attacks by
Monitoring Performance Counters?

William Kosasih
The University of Adelaide

Adelaide, Australia

Yusi Feng
Institute of Information Engineering,

Chinese Academy of Sciences
University of Chinese Academy of Sciences

Beijing, China

Chitchanok Chuengsatiansup
The University of Melbourne

Melbourne, Australia

Yuval Yarom
Ruhr University Bochum

Bochum, Germany

Ziyuan Zhu
Institute of Information Engineering,

Chinese Academy of Sciences
Beijing, China

ABSTRACT
Sharing microarchitectural components between co-resident pro-
grams leads to potential information leaks, with devastating im-
plications on security. Over the last decade, multiple proposals
suggested monitoring hardware performance counters as a method
for detecting such attacks.

In this work we investigate these proposals and find that the
promising results presented in most are unlikely to carry over
to realistic use scenarios. We identify four main shortcomings af-
fecting many of the proposals: implications of detection accuracy,
unaccounted performance overheads, undocumented or slow detec-
tion speed and a weak threat model. We further find that research
artifacts for the vast majority of proposals are not available, signif-
icantly hampering the reproducibility and scientific validation of
the results.

To overcome the reproducibility issue, we implement a detec-
tion scheme similar to those proposed in literature, achieving re-
sults similar to those in the literature. We then focus on the last
shortcoming—the weak threat model. We observe that the threat
model in existing proposals assumes that the attacker uses some
variants of published proof-of-concept attacks, without trying to
hide the attack. Instead, we propose an attack that modifies a be-
nign program. We demonstrate that such attacks remain feasible,
yet display no statistically significant variations in performance
counter values. Hence, such attacks cannot be detected by moni-
toring performance counters. We therefore conclude that despite
the large number of proposals, side-channel attack detection with
hardware performance counters is not yet ready for real-world
deployment.

KEYWORDS
HPC-based detection, cache side-channel attacks, security metrics

1 INTRODUCTION
Microarchitectural attacks have been in the spotlight in recent
years given their ability to compromise information confidential-
ity [1, 9, 10, 30, 34, 36, 44, 49, 52, 62, 63, 65, 69, 70, 74, 96, 97, 99].
Unlike traditional malware that leaves obvious traces of their activi-
ties, microarchitectural attacks leave only microarchitectural traces,

This work is licensed under a Creative Commons Attribution 4.0 International License.

making them more difficult to detect and mitigate. The effects of
these attacks can be severe, ranging from leaking cryptographic
keys [1, 9, 10, 30, 34, 39, 52, 63, 65, 70, 96, 97, 99] and other sensi-
tive information [33, 53, 93], to bypassing software [2, 43, 44] and
hardware [49, 80, 81] security boundaries.

Recognizing the risks of such attacks, the research community
proposed a wide array of modifications to software [13, 17, 50,
73, 100] and hardware [28, 41, 51, 54, 68, 89, 90, 94] with the aim
of protecting against such attacks. However, the implementation
of these mitigation techniques can be complex. Hardware-based
defenses cannot be applied to existing hardware, whereas software
countermeasures may have prohibitive performance impacts.

Rather than continuously paying the cost of protection, even
in the absence of attacks, an alternative approach aims to detect
ongoing attacks and apply countermeasures only when attacks
are detected [3–5, 12, 31, 72]. A common approach in that space is
based on using Hardware Performance Counters (HPCs), a set of
machine-specific registers that monitor microarchitectural events,
looking for statistical variations that distinguish adversarial from
benign software. The statistical tests used vary from simple thresh-
old techniques [16, 64] to sophisticated machine learning [25, 56],
with all proposals boasting high detection accuracy at a minimal
performance overhead.

Given the large number of proposals, and the excellent reported
results, in this work we ask the following question:

Are published HPC-based detection methods properly evaluated, such
that their quality can be ensured for real-world deployment against

cache side-channel attacks?

Our Contribution
In this paper, we find that the answer is, unfortunately, negative.
We review the correctness of the evaluation of 50 relevant works
from the side-channel detection literature, and find four commonly
occurring problems in their settings and assumptions, including ac-
curacy, overhead, detection speed, and threat modeling. We further
demonstrate how these improper evaluation settings, especially
weak threat models assumed by publicly available detection meth-
ods, leave them vulnerable to sophisticated attack.

To illustrate this weakness, we develop new camouflaged attacks
that mask their malicious execution patterns behind benign pro-
gram execution, allowing them to evade detection effectively. We
show the success of these attacks in stealing sensitive data while

1

https://orcid.org/0000-0003-1527-1519
https://orcid.org/0009-0003-0703-6479
https://orcid.org/0000-0002-0329-2681
https://orcid.org/0000-0003-0401-4197
https://orcid.org/0009-0003-4956-8377
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode


William Kosasih, Yusi Feng, Chitchanok Chuengsatiansup, Yuval Yarom, and Ziyuan Zhu

being undetected by two publicly available detection methods, de-
spite their high detection success rate for proof-of-concept attacks.
To further support our case, we construct our own implementation
of a detection method, named HPCache, that is capable of detecting
proof-of-concept cache attacks with perfect precision, and yet we
show that even with such perfect accuracy, it is still gullible to our
camouflaged attacks. This emphasizes the importance of assessing
detection methods against more advanced attack models.

Through the review and via our own experimentation on the
vulnerability of HPC-based cache side-channel attack detection
methods, we highlight two key results. Firstly, we demonstrate
that the current state of detection methods does not fully support
realistic scenarios as in typical practical settings. Secondly, we show
that current detection method designs can still be circumvented by
smarter and evasive attacks.
In summary, our work makes the following contributions:
• We review HPC-based cache side-channel attack detection meth-

ods, proposing four evaluation criteria for these methods and
evaluate 50 papers based on their published results.

• We propose a new detection method HPCache, with performance
comparable to recent studies.

• We develop a variant of the Flush+Reload attack that imitates
the actions of a harmless program to mask its malicious intent
during execution by camouflaging behind the execution of a
harmless program. The attack can effectively steal the complete
ElGamal key.

• Using HPCache and two other open-source methods [25, 64] as
templates, we show how to evaluate detection methods using
the four evaluation criteria proposed in this paper.
Since no work fully considers the four crucial evaluation criteria

we emphasize, we conclude that without addressing the aforemen-
tioned evaluation shortcomings, it is uncertain whether real-time
cache side-channel attack detection systems can truly be deemed
effective for practical use in real-world scenarios.

2 BACKGROUND
2.1 Caches
In an attempt to boost computing performance, CPU manufacturers
implement numerous optimizations. One such optimization is the
inclusion of caches, which are a form of intermediary memory
that functions as a bridge between the CPU and the random access
memory (RAM). Caches store copies of frequently-used data from
the RAM and provide data to the CPU with fast access speed while
providing low latency.

When a processor tries to access memory, it first checks whether
the requested data is stored in the cache. In the event that the data
is found in the cache, in other words, a cache hit, the processor
can promptly access the data from the cache. On the other hand,
if the data is not found in the cache, also referred to as a cache
miss, the processor must obtain the data from the main memory
(RAM), resulting in a slower access time. Afterwards, the processor
stores the retrieved data in the cache, potentially improving future
memory access times.

Due to the limited size of caches, when new data needs to be
added to the cache, another data that is already in the cached may
have to be removed to make room for that new data. Hence, the

state of the cache typically reflects recent program execution. Since
the cache is shared between multiple programs, the state of the
cache may be affected by one of those programs, affecting execution
speed of other programs.

Modern cache systems are typically organized into multiple sets,
each consisting of several ways, in a set-associative manner. Each
memory line is mapped to a specific cache set and can only be
stored in one of the ways within that set. Memory addresses that
map to the same cache set are called congruent addresses. A set of
congruent memory addresses is referred to as an eviction set.

2.2 Cache Side-Channel Attacks
While data eviction due to program activity is harmless in the
context of a single process, cross-eviction between different appli-
cation contexts could potentially be exploited to break information
isolation guarantees between applications. By observing timing
differences of load operations, an attacker can infer whether or not
their data is present in the cache, and therefore learn about the
execution of victim program.

This effect has been exploited to create covert channels where
two applications assume the roles of Trojan and spy, with the former
acting as a transmitter, encoding secret data by bringing a memory
address into the cache, and the latter acting as a receiver, timing
the read of that memory address. In this case, both the Trojan and
the spy are controlled by the attacker, and are essentially reading
their own memories. Thus, as far as the system is concerned, there
is no explicit communication pathway that occurs between these
applications. This essentially breaks any isolation rules that may
be put in place within a system.

In the context of side-channel analysis, the victim serves as the
transmitter, while the attacker works as the receiver, listening on
and inferring secret information. This has been exploited by many
to break cryptographic keys [1, 9, 10, 30, 34, 52, 63, 65, 70, 96, 97, 99]
as well as stealing keystrokes [33].

2.2.1 Prime+Probe. Prime+Probe [52, 63, 65] is a type of cache
attack that takes advantage of the design of set-associative caches
to gather information. The attack involves three steps. In the first
step, called the prime step, the attacker fills one or more cache sets
with their data by repeatedly accessing the addresses of an eviction
set. This places the cache in a certain condition premeditated by
the attacker to allow for an effective attack. In the second step, the
attacker waits for a certain period of time to allow the victim to
execute its program, which may include memory accesses. This, in
turn, may evict some of the attacker’s data out of the cache. That
is, in case the victim accesses memory that maps to a cache set
previously filled with the attacker’s data, the attacker’s data will be
removed from the cache. In the final step, called the probe step, the
attacker measures the time it takes to access the data used in the
prime step. If the access time is short, it implies that the data is still
in the cache and is not evicted by the victim. If the access time is
long, it implies that the victim accessedmemory that mapped to that
cache set, indicating that the victim accessed data previously stored
in that cache set. The attacker can use the mapping between cache
sets and address bits to determine the memory address accessed by
the victim.

2



SoK: Can We Really Detect Cache Side-Channel Attacks by Monitoring Performance Counters?

2.2.2 Flush+Reload. The Flush+Reload [33, 34, 96] takes advantage
of shared memory in operating systems. To prevent data redun-
dancy, frequently used objects such as libraries are shared among
multiple processes by mapping different virtual addresses in differ-
ent application contexts to the same physical memory. However, a
vulnerability arises when sensitive libraries such as those contain-
ing cryptographic code are shared between multiple applications.
This is because a malicious process gain an ability to influence the
time of cryptographic code execution and use it to infer secret keys.

The Flush+Reload attack involves three steps. In the first flush
step, the attacker flushes the victim’s line of interest from the cache.
The attacker is able to perform this action because of memory
sharing, which allows the attacker to refer to the same physical
memory location as the victim. In the second step, the attacker waits
for the victim to execute, which may perform memory accesses.
If the victim accesses the memory that the attacker flushed, the
memory will be brought back into the cache. If the victim does not
access the flushed memory, it will remain out of the cache. In the
final step, the attacker measures the time it takes to access the data
that it previously flushed. If the access time is short, it means that
the victim accessed that data. If the access time is long, it means
that the victim did not access that data. Yarom and Falkner [96]
demonstrate this attack to steal the private key of RSA by flushing
and monitoring the memory containing the square and multiply
routine.

2.3 Transient Execution Attack
Transient-execution attacks take advantage of the microarchitec-
tural side effects of instructions that are executed but whose results
are never committed to the system’s architectural state. Unlike mi-
croarchitectural side-channel attacks that can only leak metadata
about program execution such as executed instructions or data
accesses, transient-execution attacks can directly extract sensitive
data from the system. The first two classes of transient execution
attacks are Spectre [44] and Meltdown [49].

2.3.1 Spectre. Modern processors are capable of out-of-order pro-
cessing, which is a technique where the processor schedules in-
structions that have their data dependencies resolved, and are ready
to be executed, regardless of their order in the program code. This
means that as soon as their operands are ready, instructions can be
processed even before their predecessors complete their execution.
To further improve performance by reducing bottlenecks caused
by uncertainties in determining which execution path to take, they
are also equipped with a branch prediction unit (BPU). When the
processor encounters a branching instruction whose operand is
not available for use (data not cached, or pending computation),
under normal, serial execution, the processor stalls until the data
is at hand. This behavior is costly, especially given the relatively
long memory fetch time and calculations that may constitute up to
hundreds of cycles.

To alleviate this situation, modern processors use a predictive
tactic, in which they determine the branch direction that they pre-
dict is more likely to be taken once the branch operand is resolved.
In case the prediction taken by the processor is wrong, it rolls its
execution back to the point where the branch happened and con-
tinues along the correct path. This implies that the penalty of such

incorrect prediction is no worse than simply idling. However, if the
prediction is correct, the processor continues its execution along
the correctly predicted branch path as if no delay in memory fetch
or computation had occurred. By using this strategy the proces-
sor gains performance improvement given a sufficient prediction
accuracy.

Branch prediction attacks exploit the BPU by purposefully mis-
training it to predict execution paths that are not intended for
normal execution such as reading out-of-bounds data or bypass-
ing policy checks [44]. The attack then exploits the out-of-order
execution feature to forward this illicit data to a read operation on
some buffer. Despite the fact that this ill-informed execution path
eventually end up getting rolled-back, the microarchitectural state
altered by this stays and can be exfiltrated, leading to data recovery.

Spectre-type attacks are a type of branch prediction attack that
takes advantage of the way processors execute instructions after
a control or data-flow mis-prediction. The attacker manipulates
the branch-prediction unit, causing the processor to speculatively
execute instructions that do not appear in the actual instruction
stream. This is made possible by multiple prediction units that
work together to determine the outcome and target of a branch.
By poisoning one or more of these prediction units, Spectre-type
attacks direct the processor’s execution to “gadgets” which are
code snippets that enable the attacker to uncover sensitive data by
exploiting microarchitectural state changes.
• Spectre-PHT takes advantage of a component in modern pro-

cessors called the Pattern History Table (PHT), which is part
of the branch predictor. The attacker repeatedly trains the PHT
to take a certain branch using valid inputs, then executes the
targeted code with an out-of-range input that would not take the
branch according to the architectural specification, i.e., strictly
following the program’s logic results in the branch not being
taken. This causes the PHT to mis-predict the branch direction,
and the processor speculatively executes the instructions with
the out-of-range input. The attacker can use this technique to
perform out-of-bound reads, and forward the illicit data into a
temporary buffer such as the cache for the purpose of retrieval
into the architectural state later.

• Spectre-BTB is a type of Spectre attack where the attacker
leverages the Branch Target Buffer (BTB) to mis-predict the
target address of a branch. The attacker repeatedly executes a
code snippet with a target address that is not normally taken,
which trains the BTB to predict that the target address should
be taken. Once the BTB is trained, the attacker then executes
the same code snippet with an out-of-bounds target address,
causing the processor to speculatively execute code at the out-
of-bounds address. This behavior can then be used to perform a
return-oriented programming (ROP) attack, where the processor
is made to execute a sequence of instructions at unintended
locations to perform malicious actions.

2.4 Hardware Performance Counters.
Modern CPUs include hardware performance counters (HPCs), ini-
tially introduced for the purpose of debugging [23]. This is done
through recording CPU events such as number of cycles, and branch
misses. In Intel processors, this functionality is implemented under

3



William Kosasih, Yusi Feng, Chitchanok Chuengsatiansup, Yuval Yarom, and Ziyuan Zhu

the name Performance Monitoring Units (PMUs). They consist of
individual counters called Performance Monitoring Counters (PMCs).
HPCs can be programmed by setting specific Machine Specific Reg-
isters (MSRs) in the processor. Despite the vast selection of events
that can be chosen from, there are only a small number of PMCs
that can be active at any instance. Consequently, attempts to col-
lect more than the number of available counters must resolve to
multiplexing, which lowers sampling accuracy.

2.5 HPC-Based Cache Side-Channel Attack
Detection Methods

HPCs have been used to facilitate debugging and dynamic pro-
filing [23]. However, recent research has uncovered another area
where these counters may be advantageous, namely, in the realm
of cache side-channel attack detection [5, 57]. In this section, we
examine challenges of using HPCs for security-related purposes.
We then explore the classification of HPC-based detection methods
for cache side-channel attacks.

2.5.1 Challenges of Using Performance Counter for Security Prac-
tices. Das et al. [23] have brought to light issues of non-determinism
and contamination when utilizing hardware performance counters
for security purposes. This is due to the fact that the usage of non-
architectural events, which are specific to the microarchitecture of a
processor (e.g., cache accesses, branch prediction, and TLB accesses)
for security applications of hardware performance counters can be
problematic. These events differ across processor architectures and
may also change with processor enhancements. The second issue,
contamination, arises because the performance monitoring unit op-
erates at the hardware level and is application agnostic. Therefore,
when an interrupt is configured to notify of performance moni-
toring events, the PMU can generate interrupts for all processes
running on a given processor core. To obtain an accurate profile
of an application, it is essential to filter the performance counter
data relevant only to the process of interest, as performance data
can be contaminated by the events of other processes. The authors
note that while these issues may not have significant consequences
for certain applications, they can have a significant impact on ap-
proaches whose security depends on having accurate and consistent
hardware performance counter measurements. For instance, mal-
ware exploit defences are vulnerable to non-deterministic effects
and contamination of events, as security applications rely on small
variations in performance counter data to distinguish between sus-
picious and benign behaviors. Even minor variations of 1-5% in
counter values can cause these models to perform poorly. Therefore,
it is especially important to address these challenges in security
settings.

In line with what was suggested by Das et al. [23], Zhou et al.
[102] conducted an experimental study on traditional malware that
demonstrates how the use of microarchitectural level information
obtained from hardware performance counters (HPCs) cannot dif-
ferentiate between benignware and malware. Previous HPC-based
malware detectors rely on the assumption that malicious behav-
ior affects measured HPC values differently than benign behavior.
However, it is debatable and counter-intuitive as to why the se-
mantically high-level distinction between benign and malicious
behavior would manifest itself in the microarchitectural events that

are measured by HPCs. The authors do not believe that there is a
causal relationship between low-level microarchitectural events and
high-level software behavior. They argue that the positive results
in previous research are due to a series of optimistic assumptions
and unrealistic experimental setups.

Furthermore, Jiang et al. [38] evaluate existing detection tools for
cache attacks on Secure Guard Extension(SGX), Intel’s implementa-
tion of a trusted execution environment in x86_64 processors. They
identify how these tools fail to accommodate various subtleties
in the use of HPCs in the case of exploit prevention and malware
detection. They also demonstrate how an adversary can manipulate
HPCs to bypass certain security defenses, making detection tools
less effective in detecting side-channel attacks on SGX enclaves.
Existing detection mechanisms are geared towards an adversary
that interferes with the victim’s execution to extract the most secret
bits, causing significant performance degradation that can signal
an attack. However, they show that an adversary leaking smaller
portions of secret, as small as a single bit at each execution of the
victim, can remain undetected. They specifically demonstrate that
an adversary can profile a victim enclave to identify the precise
moment during execution when a specific part of the secret can be
leaked via a side-channel attack. By running the victim multiple
times and leaking a different part of the secret each time, their tech-
nique can recover the whole secret while remaining undetected.
They adapt known attacks that leverage page tables, L3 cache, or
a combination of the two and evaluate their performance on rou-
tines on libgcrypt, used by cryptographic algorithms like ElGamal,
RSA, and EdDSA. They show that an adversary using their attack
technique cannot be detected by existing detection tools unless
they tolerate a large number of false positives. They also provide
evidence that any detection tool that monitors the performance of
the victim is equally likely to fail.

2.5.2 Classification of Cache Attack Detection Methods Using HPCs.
Despite the difficulties and literature advising against the use of
HPCs in a security context, a considerable number of papers support
the application of HPCs to detect cache attacks. We gathered 50 pa-
pers related to cache side-channel attack detection methods that use
HPCs. To gain a better understanding of these detection techniques,
we first present the categories into which they can be grouped. For
this purpose, we refer to the study by Akram et al. [5], which classi-
fies academic papers on cache attack detection methods promoting
HPC use into two primary groups based on their detection pattern:
signature-based and anomaly-based. Moreover, these detection ap-
proaches can be sorted by their classifier type, either as machine
learning-based or threshold-based.

Signature-based detection methods analyze the status of mi-
croarchitectural components to identify any patterns that may be
indicative of an attack. This technique looks for similarities to
known attack patterns. If the HPC readings of an application reach
a certain similarity threshold with a known attack pattern, the
detection mechanism is triggerred.

Anomaly-based detection techniques continuously scan mi-
croarchitectural patterns to search for similarities with a benign
application. These methods identify potential attacks by compar-
ing the behavior of monitored applications by reading their HPC
values and comparing them with the expected values of a benign

4



SoK: Can We Really Detect Cache Side-Channel Attacks by Monitoring Performance Counters?

application. When an application’s readings deviate from what is
expected of a harmless application, the detection method flags the
application as a possible threat. This is based on the premise that
benign applications usually generate a modest number of microar-
chitectural HPC readings, and any numbers that exceed a certain
threshold are considered anomalous and may indicate the presence
of cache attacks.

Signature-based detection is more accurate in detecting known
attacks, but is more prone to false negatives when faced with new
attacks, whereas anomaly-based can possibly detect new attacks
but at the same time may experience false positives when execution
of benign program unexpectedly changes [7].

The detection techniques for cache side-channel attacks can be
further classified based on their classifiers, which are the methods
used to determine the likelihood of an attack based on the collected
data. There are two main methods of classification:

Threshold-based detection methods uses a simple limit-based
classification method, this is done in such a way that when HPC
values are above certain threshold, then detectionmethod associates
that trace with an attack.

Machine learning-based detection methods use a more ad-
vanced way of classifying data, i.e., with the help of machine learn-
ing classifiers. The idea behind this approach is to let machine
learning algorithms learn features in the collected data. This is
done with hopes that the classifier can generalize better over the
data, to improve detection accuracy and detect new attacks better.

Mushtaq et al. [61] advocate for the use of HPCs in detecting
cache side-channel attacks. They note that in controlled settings
with minimal background noise, threshold-based techniques may
be adequate for identifying attacks. However, in more realistic and
noisy environments, these methods have difficulty distinguishing
between benign features and attacks. Therefore, Mushtaq et al. [61]
suggest that machine learning-based approaches are better suited
for use in these types of settings.

2.5.3 Related work. There are also other detection methods that
utilize HPC, but HPC is not their focus. SCAGuard [87] can detect
and accurately classify cache side-channel attacks. However, it is
based on the attack model derived from extracting attack semantics
from the collected data (e.g., HPC, accessed memory) rather than
relying on the raw data. SCAGuard uses attack behavior modeling
and similarity comparison. First, it introduces the concept of cache
state transition enhanced basic block sequences to model attack
behaviors. Then, determine whether the program is similar to the
original POC through similarity comparison. It only uses a few
HPC events as an aid in modeling attack behavior.

3 REVIEW OF HPC-BASED CACHE
SIDE-CHANNEL ATTACK DETECTION
METHOD EVALUATION

In Section 2.5, we briefly discuss a previous survey by Akram et al.
[5] that classified various works on cache side-channel attack de-
tection methods, revealing that 20 of them rely on hardware perfor-
mance counters (out of 23 in total). Given the growing popularity

of this approach, we set out to investigate whether the use of per-
formance counters is a viable option for detecting cache attacks
and whether it is an appropriate and effective approach.

As part of our research, we searched scholarly works related to
cache side-channel detection using HPCs and identified 50 articles
on the subject matter. After conducting an analysis, we identified
several recurring issues across these papers that we consolidated
into four categories of methodological shortcomings, including
improper measurement of accuracy, overhead, and detection speed,
as well as a weak threat model used for assessing the effectiveness
of detection methods.

In this section, to confirm whether the HPC-based detection
methods are effective and feasible, we propose specific evaluation
criteria for the above four issues and evaluate whether the evalu-
ations of these four criteria in existing detection method papers
satisfy our evaluation criteria. Our findings are summarized in Ta-
ble 1, where each circle represents the conformance of the proposed
method to the criteria described above.

3.1 Accuracy
Undoubtedly, the accuracy of detection is one of the most important
indicators for judging detection methods. Assessing the accuracy
of cache attack detection methods entails examining both false pos-
itive and false negative rates. Keeping a low false negative rate is
essential, as detection techniques strive to detect potential attacks
on the systems they safeguard, thus reducing the likelihood of over-
looking malicious efforts. While having a false negative rate of 0%
is the ideal situation, it may be challenging due to the continuous
emergence of new threats and the intrinsic disadvantage defenders
experience in a “cat and mouse” context with malicious actors per-
petually avoiding detection. As such, we do not mandate a specific
false negative rate for detection methods to reach. Nevertheless, we
expect that research papers evaluate the accuracy of their detection
method’s online phase, which involves real-time detection within
a system, instead of merely gauging the accuracy of their classifier
based on stored traces from past program executions.

Out of all the papers we examined, the majority (40 out of 50)
evaluate the detection accuracy of their methods. Ten exceptions [7,
21, 24, 26, 29, 46, 64, 67, 76, 82] do not include any online-phase
accuracy assessment. We denote these papers with empty circles
in Table 1.

Prada et al. [67] does not mention detection accuracy. It shows
the PMC values with andwithout attacks, claiming that its detection
method can detect cache attacks against AES based on these values.

False positive rate is another important aspect to consider. A
detection method with a high false positive rate can be detrimental
to the protected system, as legitimate programs may be incorrectly
flagged and terminated. For instance, during a performance test of
various detection methods using the SPEC CPU 2017 benchmark,
Depoix and Altmeyer [25] consistently misclassified the benchmark
program gcc_r, which had a high cache miss rate. While this de-
tection method did not actually terminate the program, if it were
to do so, as shown by Payer [64], it could disrupt user activity and
cause critical applications to be unexpectedly terminated.

5



William Kosasih, Yusi Feng, Chitchanok Chuengsatiansup, Yuval Yarom, and Ziyuan Zhu

Table 1: Review Results. ACC represents accuracy, OV represents overhead, DS represents detection speed, TM represents
evaluation against stronger threat models. An empty circle signifies that the criterion has not been assessed, nor mentioned,
while a semi-filled circle implies that the literature mentions the specific criterion but lacks certain attributes required for
accurate assessment. A fully-filled circle demonstrates that themethod conducts its assessment of the criterion appropriately.

Literature ACC OV DS TM

Ahmad [3]
Ahmad [4]
Alam et al. [7]
Alam et al. [6]
Albalawi et al. [8]
Allaf et al. [11]
Bazm et al. [14]
Briongos et al. [15]
Carnà et al. [16]
Chiappetta et al. [18]
Cho et al. [19]
Choudhari et al. [20]
Chouhan and Halabi [21]
Demme et al. [24]
Depoix and Altmeyer [25]
Dutta and Sinha [26]
Ferracci [29]
Gregory and Harini [32]
Gülmezoglu et al. [35]
Hamza et al. [37]
Kim et al. [42]
Kulah et al. [45]
Lantz [46]
Li and Gaudiot [47]
Li and Gaudiot [48]

Literature ACC OV DS TM

Mushtaq et al. [56]
Mushtaq et al. [55]
Mushtaq et al. [58]
Mushtaq et al. [59]
Mushtaq et al. [60]
Mushtaq et al. [61]
Payer [64]
Polychronou et al. [66]
Prada et al. [67]
Sabbagh et al. [71]
Schwarzl et al. [72]
Singh and Rebeiro [75]
Tao et al. [76]
Tong et al. [78]
Tong et al. [79]
Vanathi and Chokkalingam [82]
Wang et al. [84]
Wang et al. [85]
Wang et al. [83]
Wang et al. [88]
Wang et al. [86]
Wu et al. [91]
Yan and Cui [92]
Zhang et al. [98]
Zheng et al. [101]

To prevent the potential harm caused by mistakenly terminating
legitimate applications, Ahmad [3, 4] suggested pausing the iden-
tified malicious process and leaving the decision on subsequent
actions to the user’s discretion. While this approach is suitable for
scenarios with a low rate of false positives, it becomes impractical
when the rate exceeds a certain threshold as the user would receive
an overwhelming number of prompts. Furthermore, relying on user
input contradicts the notion of an automated detector.

Schwarzl et al. [72] implemented a Spectre-PHT attack on edge
computing service software called Cloudflare Workers. Process iso-
lation can prevent these attacks but incurs high overhead. To reduce
the overhead, they propose dynamic process isolation, which iso-
lates only suspicious workers flagged by the HPC-based detection
into separate processes.

Consider that detection tools are long-running, that a large num-
ber of applications may be running on the protected system, and
that detection is performed at a very high rate (multiple tests per
second), even a minimal false positive rate can lead to the accumu-
lation of a large number of mislabeled applications. Directly killing

these benign applications will affect the normal operation of the
protected system, which is unacceptable. Even flagging suspected
applications for human assessment may create an unacceptable
load, which will lead to ignoring such alerts. Consequently, there is
a need to either have an extremely low false-positive rate or have a
non-destructive method of handling those.

If a paper reports zero false positive rates, or discusses the po-
tential outcomes of high false positives and gives corresponding
mechanisms for dealing with processes deemed malicious, rather
than simply killing them, we consider it to have accounted for false
positives and give them fully-filled circles. Seven papers [16, 18,
20, 66, 85, 92, 101] meet our criteria of absolute zero false positive
rates,1 and four [3, 4, 72, 75] analyze the potential outcomes of
high false positive rates and give corresponding mechanisms, we

1We note that a false-positive rate of zero may be the consequence of insufficient
evaluation, rather than indicative of a low enough error rate. Our classification gives
the papers the benefit of the doubts, assuming that even if the real false positive is
above zero, it is low enough to be acceptable.

6



SoK: Can We Really Detect Cache Side-Channel Attacks by Monitoring Performance Counters?

argue that these eleven papers appropriately evaluate the accuracy
criterion.

To minimize the impact of false positives, Singh and Rebeiro
[75] modified Linux’s scheduler and provided potentially malicious
behavior threads with insufficient time and resources to carry at-
tacks. They claimed that their implementation incurred less than 1%
overhead on average. Briongos et al. [15] proposed several ways
to deal with detected potentially malicious applications, such as
adding cache noise and performing dummy operations on mean-
ingless secrets. However, no implementation of such mechanisms
is proposed, and they are not evaluated.

For the remaining 29 papers that evaluated the real-time detec-
tion accuracy of their methods but had false positive rates above 0%
and did not discuss the consequences of high false positive rates,
we considered them to partially meet the evaluation criteria for
accuracy and gave them half circles.

3.2 Overhead
The term “overhead” refers to the decrease in system speed that
occurs when attack detection methods are executed. Performance
is one of the most important indicators of a computer. Detection
methods must demonstrate their impact on computer performance
overhead in order to be selected and deployed.

In order to ensure a fair assessment of the overhead, we rec-
ommend that applications under benchmark are either pinned to
the same core as the detection method or run on all cores. This
guarantees that the detection method influences the benchmark
by ensuring that the benchmark is scheduled on the same core
as the detection method. This approach prevents the misconcep-
tion of the detection method being “overhead-free” due to them
being scheduled on different cores. Only three papers [16, 45, 75]
appropriately examine this criterion. Their detection techniques
operates during every context switch (which occurs on each core
of the system), signifying that their benchmark application and the
detection method run on the same core, thus allowing for a fair
overhead assessment.

Out of the 50 papers reviewed, 32 assess their detection overhead,
while 18 do not perform any overhead evaluation. For papers that do
not perform any overhead evaluation, we assign an empty circle in
Table 1. For papers that evaluate their detection method’s overhead
but do not meet the aforementioned criterion, we assign a semi-
filled circle. For the three papers that meet the criterion, we assign
a fully-filled circle.

Out of the 18 papers that do not evaluate overhead, five [21, 32, 47,
48, 78] claim that the detection overhead associated with collecting
HPC data is low, without evaluating their overhead. We believe that
this claim is inadequate to demonstrate the low overhead of their
detection system. This is because evaluation of system overhead
should include not only the cost of reading HPC data but also
the overhead associated with performing attack classification, and
potentially scanning the processes running on the system.

Despite measuring their overhead with the benchmark appli-
cation and data collection process pinned to the same core, we
consider the overhead evaluation of Chiappetta et al. [18] to par-
tially cover the true overhead of their detection method. This is
because their evaluation only encompasses the overhead of their

HPC collection module, ignoring the more resource intensive clas-
sification step. Therefore, we assign a semi-filled circle.

Another example on the importance of fair overhead evaluation
is demonstrated by Hamza et al. [37] who proposed a mitigation
technique for cross-hyperthread TSX Asynchronious Aborts (TAA).
This method continuously scans for TAA by running a TSX block
to check for activities in the sibling thread that causes any aborts.
While this method may work, it occupies sibling thread at all time,
effectively enabling only one thread to be used for other purposes
than the detection method. This is counterproductive to their aim
of minimizing cost of introducing a detector for the purpose of
preventing the cost of disabling hyperthreading.

3.3 Detection Speed
Assessing the speed of detecting potential attacks is crucial in estab-
lishing a safe threshold that users are willing to accept with regard
to the possibility of information leakage. Even if a method possesses
high detection accuracy, it would not be very useful if it fails to
recognize malicious activities in a timely manner, as attackers can
steal data before the system detects the attack.

We evaluate research papers based on whether they examine the
detection speed of their detection techniques. A thorough evalua-
tion of detection speed involves conducting such an assessment and
presenting the results in terms of either the time required to identify
attacks or the percentage of attack completion when the attack is
detected. We assign fully-filled circles to papers that meet these cri-
teria. Out of 50 papers analyzed, six [19–21, 35, 37, 98] present their
detection speed using the formermetric, while ten [15, 16, 46, 55, 58–
61, 91, 101] use the latter. We consider the latter metric to be more
informative because it signifies the maximum amount of key leak-
age from a cryptographic algorithm. Nevertheless, both approaches
are arguably valid, and therefore we assign a fully-filled circle in
Table 1 for these 16 papers.

Yan and Cui [92] claim that in a real-world setting, because
attackers cannot synchronize with the victim, their execution is
much longer than a proof-of-concept attack where synchronization
is assumed. They did not test their method’s detection speed.

Ferracci [29] evaluate that high sampling frequency results in
low accuracy. Too high frequency results in too few information,
and therefore it is not possible to distinguish a malicious application
from a non-malicious one. When the sampling frequency is too low,
detection can be bypassed by inserting code before and after the
attack to normalize the HPC readings.

Li and Gaudiot [47], Polychronou et al. [66], Singh and Rebeiro
[75], Tong et al. [78], Wang et al. [83] state their data collection
interval. However, none of them detail the time for the whole
detection process.

Among the remaining 34 papers, 16 [3, 4, 6, 24, 25, 29, 42, 47, 48,
64, 66, 67, 78, 79, 83, 92] provide the detection method’s sampling
interval but do not evaluate the system’s detection as a whole, for
which we assigned a half-filled circle. The other 18 [7, 8, 11, 14,
18, 26, 32, 45, 56, 71, 72, 75, 76, 82, 84–86, 88] do not address this
criterion at all, to which we assigned an empty circle.

7



William Kosasih, Yusi Feng, Chitchanok Chuengsatiansup, Yuval Yarom, and Ziyuan Zhu

3.4 Threat Model
A significant problem with HPC-based detection methods is that
many of them are developed with the assumption that attackers
will only use naive, proof-of-concept implementations of attacks.
However, this assumption is inaccurate because in reality, attackers
are more likely to use advanced techniques to evade detection.
Therefore, it is critical to determine whether current detection
systems can effectively detect these evasive attacks.

Several papers discuss the feasibility of evasive attacks. Li and
Gaudiot [48] suggested that attackers may attempt to understand
how the detection method works and mimic the behavior of normal
applications to prevent detection. On the other hand, Chiappetta
et al. [18] proposed a “smarter” spy process that accesses a random
number of addresses generating a random number of cache hits or
misses to evade detection. Additionally, Wu et al. [91] discussed
the possibility of having an attack that leaks information at a very
small rate at a time. The attack is then done over a large number
of iterations, recovering more secret as it does so. They argued
that this approach may be enough to circumvent detection from
detectionmethods that sample data over a short interval. It is critical
that detection systems are proficient in defending against more
advanced types of attacks as adversary are likely to use smarter
techniques that improve their chances of success.

Next, we present papers that evaluate or improve detection meth-
ods against arbitrary evasion attacks. Wang et al. [88] addressed
this issue by varying the parameters of attacks such as the num-
ber of attack attempts, the time interval between attack attempts,
and the number of training in each training phase and the interval
between two consecutive training attempts.

Gregory and Harini [32] acknowledged that prior work to detect
cache side-channel attacks can be easily bypassed by simply slowing
down the attack and interleaving benign code execution between
exploit attempts. They claimed that their approach of using undoc-
umented HPCs enabled them to create a detector invulnerable to
modifications that break traditional detection methods.

Kulah et al. [45] evaluated their detectionmethod against stealthy
spy processes that try to keep their cache activity minimum. They
showed that it is still possible to detect these attacks as they still
cause abnormal level of cache contentions to achieve their goal.

Gülmezoglu et al. [35] put different amount of sleep between
attack steps to avoid detection. They concluded this technique is
not adequate to fool their detection method.

Wu et al. [91] demonstrated the possibility of an intelligent ad-
versary that executes attack at a slow rate. While this technique is
appropriate for evading detection, especially those that have small
window of observation, aggregated HPC data of small microar-
chitecture traces at a time will eventually accumulate such that
distinction from benign execution becomes apparent. They demon-
strated their detection system’s ability in detecting such attacks.
While this argument is certainly valid, it raises the question of how
to keep track of the aggregated readings when both the victims and
the attacker run in multiple execution context rather than just one.

Polychronou et al. [66] tested their detection method robustness
against cache side channel, Spectre, and other microarchitecture at-
tacks with varying eviction interval, insertion of nops, and random

sleep functions during the attack. Their insertion of nop instruc-
tions and sleep functions is done in a way that does not interfere
with the attack. Their detection method was capable of detecting
these evasive attacks without false negatives.

Schwarzl et al. [72] discussed two types of camouflaged attacks.
Their detection is based on thresholds. First, when the attacker
slows down the attack and gets below the threshold, although it
results in a false negative, the attacker requires more requests to
complete the attack, which can be mitigated by limiting the number
of subrequests. Second, an attacker can also attempt to get below
the threshold by adding additional code pages. However, a larger
code size will cause V8 to abort the attack.

Overall, 23 out of 50 papers considered the possibility of evasive
attacks [3, 4, 6, 7, 15, 18, 32, 35, 45, 48, 59, 64, 66, 72, 75, 79, 84–
86, 88, 91, 98, 101]. However, only nine [18, 32, 35, 45, 66, 72, 86,
88, 91] evaluated their detection method against any sort of attack
modification efforts. For these nine papers, we assigned a fully-filled
circle, whereas for the remaining 14 papers, we used a half-filled
circle. For the 27 papers that did not acknowledge this issue, we
assumed that these works were developed under the assumption of
a naive proof-of-concept attacks and give them empty circles.

4 ASSESSING THE QUALITY OF ATTACK
DETECTION METHODS

In Section 3, we highlight four performance evaluation criteria for
HPC-based cache side-channel attack detection methods. In this
section, we apply these four criteria to evaluate publicly accessible
detection methods, and since only two methods are reproducible,
we also construct and evaluate our own method.

4.1 Experiment Environment
The experiments in this section are conducted on an Intel NUC 9
Extreme Kit that comes with an Intel Core i7-9750H CPU. The
system runs on Ubuntu 22.04.

4.2 Our Method
We made efforts to acquire the implementation code from the au-
thors, but we were only able to obtain a limited number of solutions.
Out of the total number of papers (50), we found two available on-
line and contacted the authors of the remaining papers via email.
We received responses from 21 of them, out of which 13 provided
us with the code. However, only the two that were previously open
sourced online worked, meaning they were able to compile and
perform the detection as expected.

Due to the unavailability of reliable implementations, we were
unable to verify their quality. We supplement our experiments with
our own cache attack detection solution that uses comparable tech-
nique to other proposed methods. We call our method HPCache.

It is important to note that HPCache does not aim to offer flawless
detection accuracy, minimum performance overhead, nor the ability
to detect advanced threat models. Instead, it serves as an illustration
of how to apply the evaluation criteria outlined in Section 3.

It consists of three modules: the Process Checker, the Data Col-
lector, and the Classifier. The Process Checker module scans the
system for running processes, tracks started and killed processes,
and sends process information to the Data Collector module. The

8



SoK: Can We Really Detect Cache Side-Channel Attacks by Monitoring Performance Counters?

Data Collector module uses the process information from the Pro-
cess Checker to collect HPC data from each running process in the
system every 100 milliseconds. The collected data is associated with
the process from which it was sampled and then passed on to the
Classifier module. The Classifier module processes the HPC data us-
ing a classifier algorithm chosen by the user (in the experiments in
this paper, a neural network classifier is used) to determine whether
the HPC data is indicative of cache attacks.

To gather performance counter data for our detection, we uti-
lize the PAPI library [77], which offers a consistent interface and
approach for accessing the performance counter hardware present
in most major microprocessors. The HPC events we use as a data
source for our detection method are listed in Table 2. This table
includes the names of PAPI events, along with their corresponding
descriptions, Intel performance counter mnemonics, and an indica-
tion of whether or not the events are derived. If an event is derived,
this indicates that it is computed from a combination of multiple
underlying performance counter events.

4.3 Accuracy
First, to assess the accuracy criterion, we test the accuracy of
these detection methods in detecting standard proof-of-concept
attacks. To this end, we have selected an implementation of Spectre-
PHT [22], and an implementation of the Flush+Reload attack on
GnuPG from the Mastik library [95]. These attacks are chosen due
to their significant security implications [44]. In particular, the risk
posed by Flush+Reload is noteworthy as it is capable of facilitating
the theft of cryptographic keys [52, 63].

We assess the accuracy of our detection technique, along with
two other detection methods [25, 64] across an 8-hour time frame,
during which we execute multiple benign programs, encompassing
the CPU stress-testing application stress-ng, the gcc compiler for
compilation, GnuPG for decryption, and the SPEC CPU 2017 gcc_r
benchmark. Additionally, we run malicious applications such as
Spectre and Flush+Reload on GnuPG. Our detection method is put
to the test against 1,000 benign and 1,000 malicious applications.

Table 3 presents our detection method’s accuracy compared
to that of Payer [64] and Depoix and Altmeyer [25]. To make a
fair comparison, we test all detection methods against the same
collection of benign andmalicious samples.We find that Depoix and
Altmeyer [25] only scans for processes running before starting their
detection method, therefore we conduct our evaluation by initiating
the malicious attack, then launching their detection method, and
repeating this sequence for each subsequent experiment. As for
Payer [64], we encounter some memory errors after a few minutes
of running their detection method and had to modify our testing
approach to start a new instance of the detection method for each
sample being tested.

Furthermore, we conduct experiments to evaluate the effect of dif-
ferent sampling intervals on the accuracy of our detection method.
Table 4 shows that using a sampling interval of 1 or 10 milliseconds
leads to a decline in accuracy compared to using a 100 millisec-
ond sampling interval. Under a 1-millisecond sampling interval,
both the false negative and false positive rates increase. Similarly,
under a 10-millisecond sampling interval, the false negative rate
increases, while the false positive rate remains at zero. We conclude

that this outcome results from inadequate amount of data being
collected within both 1 and 10 millisecond intervals, as both benign
and malicious applications have execution periods where the cache
miss rate is exceptionally high or low. Collecting HPC data within
these intervals fails to capture a comprehensive view of program
execution. Therefore, we determine that the sampling interval of
100 milliseconds is optimal for our detection method.

Our tool’s detection capabilities and functionality are comparable
to others in the field [20, 55–61, 78, 79, 91, 92], as demonstrated by
the low false positive and false negative rate of 0%. In conclusion, it
is important to conduct accurate evaluations of detection methods’
accuracy. A low false negative rate ensures effective protection, and
a low false negative rate prevents excessive false positive rate that
could render them impractical.

4.4 Overhead
Second, we evaluate the overhead of these detection methods using
the technique we recommend for overhead evaluation in Section 3.2.
We used the SPECspeed2017_int_base suite, which includes 10
representative benchmarks, such as the GNU C compiler, video
compression, and route planning. We initially ran the benchmark
application on all cores to establish a baseline CPU speed. Subse-
quently, we ran the benchmark application on all cores while the
detection system was active.

The benchmark results for ourmethod, as well as for themethods
proposed by Payer [64] and Depoix and Altmeyer [25], are summa-
rized in Table 5. Since each benchmark took a different length of
time, we used geometric means rather than averages to maintain
fairness and avoid a large impact on the results from benchmarks
that took longer. Using a sampling period of 100 milliseconds, our
method resulted in an average slowdown of 1.106. The slowdown
of Depoix and Altmeyer [25] was 1.003, which may be due to its
implementation flaw of only scanning processes that were running
before its detection method started. Payer [64] had minimal impact
on CPU performance, which we attribute to its threshold-based
approach that does not require complex data classifier algorithms,
and its sampling frequency is only 1/10 that of ours.

4.5 Detection Speed
Third, we assess the detection speed of detection methods by mea-
suring the time it takes for them to identify ongoing attacks.

With a sampling interval of 100 milliseconds, HPCache can iden-
tify attacks within 300 milliseconds of the execution of a malicious
program. By increasing the sampling interval to 10 milliseconds,
the tool can detect attacks in just 100 milliseconds. However, we
have found that using a sampling interval of 1 millisecond leads
to a longer detection time. This is because the amount of infor-
mation collected during this period is insufficient, as discussed in
Section 4.3. Consequently, the detection method can only recognize
an attack trace as malicious after it has been running for a longer
period, resulting in longer detection times.

For comparison, Payer [64] uses a sampling interval of 1000 mil-
liseconds, and detects attacks within 1100 milliseconds. Regarding
Depoix and Altmeyer [25], we were unable to test their detection
speed because their method only detects attacks that were executed
prior to its start-up, meaning that it cannot detect new attacks.

9



William Kosasih, Yusi Feng, Chitchanok Chuengsatiansup, Yuval Yarom, and Ziyuan Zhu

Table 2: PAPI events used in our detection methods, their description and native performance counter events in x86_64.

PAPI Event Name Description Intel Mnemonic Derived
PAPI_L1_DCM L1d misses L1D.REPLACEMENT N
PAPI_L1_ICM L1i misses L2_RQSTS.ALL_CODE_RD N
PAPI_L1_TCM L1 misses L1D.REPLACEMENT, L2_RQSTS.ALL_CODE_RD Y
PAPI_L2_ICM L2i misses L2_RQSTS.CODE_RD_MISS N
PAPI_L2_TCA L2 accesses L2_RQSTS.ALL_CODE_RD,

L2_RQSTS.ALL_DEMAND_REFERENCES
Y

Table 3: Accuracy of three detection methods.

Criteria Payer [64] Depoix and
Altmeyer [25] HPCache

Number of Datapoints 2000 2000 2000
Number of True Positive 861 843 1000
Number of False Positive 0 500 0
Number of True Negative 1000 500 1000
Number of False Negative 139 157 0
False Negative Rate 13.9% 15.7% 0.0%
False Positive Rate 0.0% 50.0% 0.0%

Table 4: Accuracy of HPCache with 100, 10, and 1 millisecond
sampling interval.

HPCache HPCache HPCache
Criteria 100ms 10ms 1ms
Number of Datapoints 2000 2000 2000
Number of True Positive 1000 570 577
Number of False Positive 0 0 28
Number of True Negative 1000 1000 972
Number of False Negative 0 430 423
False Negative Rate 0.0% 43.0% 42.3%
False Positive Rate 0.0% 0.0% 2.8%

These findings highlight the discrepancy between the sampling
interval of HPC and the detection speed of a detectionmethod. They
emphasize the importance of accurately evaluating the detection
speed rather than solely stating sampling interval used (as seen in
numerous papers in Section 3.3). For example, collecting HPC-data
every 100 milliseconds does not guarantee that attacks are detected
within such time-frame. Such precise reporting of detection speed
enables users to make informed decisions regarding the suitability
of detection methods in safeguarding their systems against specific
threats.

4.6 Threat Model
Finally, we evaluate the accuracy of the detection methods against
stronger attack models. First, we propose camouflaged attacks that
hide malicious activities within benign code, and demonstrate the
ability of these attacks to recover ElGamal keys. Second, we test
the effectiveness of the three aforementioned detection methods in
identifying camouflaged attacks. We also compare the accuracy of
these detection methods in detecting proof-of-concept attacks to
understand the differences between these two threat models, and

Listing 1: Injection Code
void inject_attack() {
if (rand() < PROB)
do_fr_gpg();

}

static inline bitmap_element *
bitmap_find_bit (bitmap head, unsigned int bit)
{
// Inject attack at the beginning of this function.
inject_attack();

bitmap_element *element;
...

}

understand whether weaker threat model assumptions lead to an
overestimation of the capabilities of detection methods.

4.6.1 Our Camouflaged Attack. We injected the Flush+Reload at-
tack and Spectre attack into the SPEC CPU 2017 gcc_r benchmark.
The gcc_r benchmark is a C compiler that tests the optimization
and code generation capabilities of the CPU. We insert a piece of
attack code in the most frequently called function in the benchmark
application, and set the probability of executing the attack code.

We choose the bitmap_find_bit function which is called the most
number of times during the benchmark execution. In Listing 1, we
show the insertion of inject_attack function at the very beginning of
the bitmap_find_bit function. In inject_attack, we perform the actual
Flush+Reload attack sequence against GnuPGwith a low probability
setting.With these, we essentially interleave the execution of Flush+
Reload alongside the actual benchmark. Note that the probability of
running the attack code is intentionally very small. Consequently,
the execution of the injected program largely resembles that of the
actual benchmark. We inject Spectre attack in the same way.

To hide malicious behavior, we schedule the attack infrequently
between actual benchmark procedures and ensure that the execu-
tion of the attack at each iteration is brief. This results in shorter
traces that do not capture the complete key. Furthermore, since we
do not assume any synchronization between our attack and the
victim’s ElGamal encryption algorithm, the traces may begin at
any stage of the encryption algorithm. To address these issues, we
adopted the approach used by Katzman et al. [40] to recover the
complete key from our partial traces.

4.6.2 The Utility and Cost of our Camouflaged Attacks. Our Flush+
Reload attack specifically aims to recover the private key from a vul-
nerable implementation of the ElGamal encryption algorithm [27].

10



SoK: Can We Really Detect Cache Side-Channel Attacks by Monitoring Performance Counters?

Table 5: Overhead of detection when running all-core SPEC CPU 2017 benchmark.

Base Payer [64] Depoix and Altmeyer [25] HPCache
SPEC CPU 2017 Time (s) Time (s) Slowdown Time (s) Slowdown Time (s) Slowdown
600.perlbench_s 263 263 1.000 263 1.000 312 1.186
602.gcc_s 385 384 0.997 384 0.997 431 1.120
605.mcf_s 574 582 1.014 592 1.031 642 1.119
620.omnetpp_s 386 385 0.997 388 1.005 393 1.018
623.xalancbmk_s 257 254 0.988 254 0.988 289 1.125
625.x264_s 162 163 1.006 162 1.000 179 1.105
631.deepsjeng_s 307 309 1.007 309 1.007 342 1.114
641.leela_s 401 402 1.003 401 1.000 440 1.097
648.exchange2_s 289 290 1.004 290 1.004 314 1.087
657.xz_s 552 552 1.000 553 1.002 606 1.098
Geometric Mean 336.0 336.5 1.002 337.1 1.003 371.6 1.106

Table 6: Time required for camouflaged attackswith different
probabilities to recover full ElGamal key.

Frequency Time needed
1/10,000,000 18:13:15
1/1,000,000 1:50:34
1/100,000 00:15:08
1/10,000 00:05:41

The core of this attack lies on the modular exponentiation opera-
tion, which involves raising a base 𝑏 to the power 𝑒 modulo some
modulus𝑚, i.e., calculating 𝑏𝑒 mod𝑚. In the context of ElGamal
decryption, the private key serves as the exponent 𝑒 . Consequently,
the attack aims to retrieve the exponent.

In Table 6, we present the results of our camouflaged Flush+
Reload attacks, including the frequency of attack injection and the
time required for complete key recovery. The frequency column rep-
resents the probability of executing the malicious attack injection
within the bitmap_find_bit function listed in Listing 1.

As shown in the table, when the injected attack is executed with
a probability of one in ten million, the time needed to recover the
full 459 bits private ElGamal decryption key is approximately 18
hours. However, when the injection is run more aggressively, at
the probability of one in ten thousand, the time required to recover
the key drops to around six minutes.

4.6.3 Detection Differences Between PoC and Camouflaged Attacks.
We conduct experiments to measure the effectiveness of Payer [64],
Depoix and Altmeyer [25], and HPCache in detecting attacks, in
particular, we test these detection methods capability in detecting
both proof-of-concept attacks and camouflaged attacks. We run
both Spectre and Flush+Reload attack applications 1000 times and
allow the methods a maximum of ten seconds to identify each
scenario. If the detection method is able to detect an attack within
ten seconds, we consider it a true positive. Otherwise, we consider
it a false negative. We also test the detection method against benign
SPEC CPU 2017 gcc_r benchmark for 1000 times. If the benchmark
is detected as malicious, we consider this a false positive; otherwise,
we consider it a true negative.

We summarize the results of our experiments in Table 7, which
present the true positive and false positive rates of each detection
method in identifying both proof-of-concept and camouflaged Spec-
tre and Flush+Reload attacks. HPCache achieves perfect accuracy
in detecting proof-of-concept Spectre and Flush+Reload attacks on
GnuPG. However, it fails to detect any of the camouflaged Spectre
and Flush+Reload attacks.

Depoix and Altmeyer [25] detect proof-of-concept Spectre and
Flush+Reload attacks with 100.0% and 62% accuracy respectively.
They also detect 100.0% of the camouflaged as malicious. At the
same time, they falsely detect the benchmark without any attack
with 100% false positive rate, while HPCache and Payer [64] do not
falsely detect the benchmark application.

Payer [64] detect proof-of-concept Spectre and Flush+Reload
attacks with 73.1% and 100.0% accuracy respectively, but they fail
to detect any of the camouflaged Spectre and Flush+Reload attacks.

The findings show the differences in accuracy when detecting
proof-of-concept attacks compared to camouflaged attacks, empha-
sizing the need to evaluate detection methods against more robust
threat models. Clearly, simply stating the defense against a par-
ticular attack without providing details of its implementation and
threat model can lead to an overestimation of the effectiveness of
detection methods.

4.6.4 Re-training Model with Camouflaged Attacks. At first glance,
the failure of the detection methods may appear to be caused by the
training data not being well-suited to such camouflaged attacks, and
a simple re-training of the classifier or adjusting threshold values
could solve the problem. As suggested by Depoix and Altmeyer
[25], retraining of classifiers is needed when deploying a detector in
a new environment or when supporting detection of new attacks.

Our analysis indicates that the root cause of the problem goes
beyond inadequate training data. Retraining HPCache to include
camouflaged attacks proved ineffective, as it resulted in a sharp
increase in false positives, resulting in 100.0% false positive rate.
Table 8 shows the result of the detection method trained with
camouflaged attack labeled as malicious.

This shows that the detection method in discerning between
genuinely benign program execution and the execution of a be-
nign program injected with malicious attacks. Since the detection

11



William Kosasih, Yusi Feng, Chitchanok Chuengsatiansup, Yuval Yarom, and Ziyuan Zhu

Table 7: True/False positive rates of proof-of-concept(PoC) and camouflaged attacks.

Spectre Flush+Reload
Name Classifier PoC Camouflaged PoC Camouflaged
Payer [64] Threshold-Based 73.1%/ 0.0% 0.0%/ 0.0% 100.0%/ 0.0% 0.0%/ 0.0%
Depoix and Altmeyer [25] Neural Network 100.0%/100.0% 100.0%/100.0%* 62.2%/100.0% 100.0%/100.0%*

HPCache Neural Network 100.0%/ 0.0% 0.0%/ 0.0% 100.0%/ 0.0% 0.0%/ 0.0%
* Depoix and Altmeyer [25] detected camouflaged attacks with 100% due to false positive in the original SPEC CPU
2017 gcc_r benchmark

Table 8: Accuracy of our detectionmethod when trained with
camouflaged attacks

Total number of datapoints 2000
Number of true positives (TP) 1000
Number of false positives (FP) 1000
number of true negatives (TN) 0
number of false negatives (FN) 0
False negative rate 0.0%
False positive rate 100%

method is unable to distinguish between the two, it labels gen-
uinely benign applications as malicious. This is because during the
training of the detection method, the training data for the execu-
tion of injected attacks is marked as malicious. Consequently, the
detection method becomes confused and starts classifying benign
applications as malicious.

5 CONCLUSIONS
Prevention and mitigation techniques against cache side-channel
attacks have been proposed to counter the ever-increasing threat
of these attacks. However, the high cost of hardware solutions has
prompted researchers to explore cheaper software-based alterna-
tives, such as HPC-based attack detection methods. In this paper,
we reveal that the performance evaluation of current proposed
methods are insufficiently conducted to ensure effective protection
in practical real-world scenarios. Our analysis of 50 papers reveals
that none meets all the necessary criteria of accuracy, overhead,
detection speed, and threat model evaluation.

We highlight how the inadequate evaluation of these criteria
compromises the protection provided by detection methods. We
highlight the importance of conducting accurate evaluation of detec-
tion accuracy to ensure effective protection. Additionally, attention
should be given to prevent excessive false positives, which can
render detection methods impractical and diminish their adoption.

Furthermore, we demonstrate the importance of appropriately
evaluating the overhead. An improper setup of benchmark appli-
cations can result in unfairly low overhead evaluations. Precise
reporting of overhead is crucial since unexpectedly high overhead
can impede the adoption and practicality of detection methods.

Additionally, we underscore the importance of properly eval-
uating detection speed and highlight the difference between the
sampling interval of HPC data collection and the detection speed
of a detection method. Accurate information about detection speed

enables users to make informed decisions about the suitability of
detection methods for protecting against specific threats.

Finally, we illustrate how a weak threat model can lead to an
overestimation of the effectiveness of detection methods. To illus-
trate this, we performed an assessment of three cache side-channel
attack detection methods, showing them ineffective against our
camouflaged attack. Based on these findings, we propose that au-
thors should acknowledge the limitations of their detectionmethods
when they fail to identify attacks under a stronger threat model.
Transparent disclosure of such limitations is crucial for users to
avoid unexpected compromises due to a lack of information.

In conclusion, we find that HPC-based cache side-channel attack
detection methods still have a long way to go before they can
be considered practical and widely applicable. We conclude that
without addressing the aforementioned evaluation shortcomings,
it remains uncertain whether these detection methods can truly be
deemed effective for deployment in real-world scenarios.

ACKNOWLEDGMENTS
This research was supported by the Australian Research Coun-
cil projects DE200101577 and DP210102670; the China Scholarship
Council (CSC), grant No. 202104910308; the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CASA - 390781972.

Parts of this work were undertaken while Chitchanok Chuengsa-
tiansup and Yuval Yarom were affiliated with the University of
Adelaide and while Yusi Feng was in a research visit at the Univer-
sity of Adelaide.

REFERENCES
[1] Onur Aciiçmez and Jean-Pierre Seifert. 2007. Cheap Hardware Parallelism

Implies Cheap Security. In FDTC. 80–91.
[2] Ayush Agarwal, Sioli O’Connell, Jason Kim, Shaked Yehezkel, Daniel Genkin,

Eyal Ronen, and Yuval Yarom. 2022. Spook.js: Attacking Chrome Strict Site
Isolation via Speculative Execution. In IEEE SP. 699–715.

[3] Bilal A. Ahmad. 2019. Detecting Spectre and Meltdown Attacks Using Hardware
Performance Counters and Machine Learning. Ph. D. Dissertation. University of
the Punjab.

[4] Bilal A. Ahmad. 2020. Real Time Detection of Spectre and Meltdown Attacks
Using Machine Learning. arXiv preprint arXiv:2006.01442 (2020).

[5] Ayaz Akram, Maria Mushtaq, Muhammad Khurram Bhatti, Vianney Lapotre,
and Guy Gogniat. 2020. Meet the Sherlock Holmes’ of Side Channel Leakage: A
Survey of Cache SCA Detection Techniques. IEEE Access 8 (2020), 70836–70860.

[6] Manaar Alam, Sarani Bhattacharya, and DebdeepMukhopadhyay. 2021. Victims
Can Be Saviors: A Machine Learning-Based Detection for Micro-Architectural
Side-Channel Attacks. ACM J. Emerg. Technol. Comput. Syst. 17, 2 (2021), 14:1–
14:31.

[7] Manaar Alam, Sarani Bhattacharya, Debdeep Mukhopadhyay, and Sourangshu
Bhattacharya. 2017. Performance Counters to Rescue: A Machine Learning
Based Safeguard Against Micro-Architectural Side-Channel-Attacks. IACR

12



SoK: Can We Really Detect Cache Side-Channel Attacks by Monitoring Performance Counters?

Cryptol. ePrint Arch. (2017), 564.
[8] Abdullah Albalawi, Vassilios G. Vassilakis, and Radu Calinescu. 2022. Protect-

ing Shared Virtualized Environments Against Cache Side-channel Attacks.. In
ICISSP. 507–514.

[9] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida
García, and Nicola Tuveri. 2019. Port Contention for Fun and Profit. In IEEE SP.
870–887.

[10] Alejandro Cabrera Aldaya, Cesar Pereida García, Luis Manuel Alvarez Tapia,
and Billy Bob Brumley. 2019. Cache-Timing Attacks on RSA Key Generation.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 4 (2019), 213–242.

[11] Zirak Allaf, Mo Adda, and Alexander E. Gegov. 2019. Malicious Loop Detection
Using Support Vector Machine. In INISTA. 1–6.

[12] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetuparna Das,
Matthew Hicks, Yossi Oren, and Todd M. Austin. 2016. ANVIL: Software-Based
Protection Against Next-Generation Rowhammer Attacks. (2016), 743–755.

[13] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Carlos Daniel Luna, and
David Pichardie. 2014. System-level Non-interference for Constant-time Cryp-
tography. In CCS. 1267–1279.

[14] Mohammad-Mahdi Bazm, Thibaut Sautereau, Marc Lacoste, Mario Südholt,
and Jean-Marc Menaud. 2018. Cache-based Side-Channel Attacks Detection
Through Intel Cache Monitoring Technology and Hardware Performance Coun-
ters. In FMEC. 7–12.

[15] Samira Briongos, Gorka Irazoqui, Pedro Malagón, and Thomas Eisenbarth. 2018.
CacheShield: Detecting Cache Attacks Through Self-Observation. In CODASPY.
224–235.

[16] Stefano Carnà, Serena Ferracci, Francesco Quaglia, and Alessandro Pellegrini.
2022. Fight Hardware with Hardware: System-Wide Detection and Mitigation
of Side-Channel Attacks Using Performance Counters. Digital Threats: Research
and Practice (2022).

[17] Chandler Carruth. 2018. Speculative Load Hardening. https://llvm.org/docs/
SpeculativeLoadHardening.html.

[18] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. 2016. Real Time Detection
of Cache-Based Side-Channel Attacks Using Hardware Performance Counters.
Appl. Soft Comput. 49 (2016), 1162–1174.

[19] Jonghyeon Cho, Taehun Kim, Soojin Kim, Miok Im, Taehyun Kim, and Youngjoo
Shin. 2020. Real-time Detection for Cache Side Channel Attack Using Perfor-
mance Counter Monitor. Applied Sciences 10, 3 (2020), 984.

[20] Amit Choudhari, Sylvain Guilley, and Khaled Karray. 2022. SpecDefender:
Transient Execution Attack Defender using Performance Counters. In ASHES.
15–24. https://doi.org/10.1145/3560834.3563830

[21] Munish Chouhan and Hasbullah Halabi. 2016. Adaptive Detection Technique
for Cache-Based Side Channel Attack using Bloom Filter for Secure Cloud. In
ICCOINS. 293–297.

[22] Crozone. [n. d.]. Crozone/spectrepoc: Proof of Concept Code for The Spectre
CPU Exploit. https://github.com/crozone/SpectrePoC

[23] Sanjeev Das, Jan Werner, Manos Antonakakis, Michalis Polychronakis, and
Fabian Monrose. 2019. SoK: The Challenges, Pitfalls, and Perils of Using Hard-
ware Performance Counters for Security. In IEEE (SP). 20–38.

[24] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waksman,
Simha Sethumadhavan, and Salvatore Stolfo. 2013. On the feasibility of on-
line malware detection with performance counters. ACM SIGARCH computer
architecture news 41, 3 (2013), 559–570.

[25] Jonas Depoix and Philipp Altmeyer. 2018. Detecting Spectre Attacks by Identify-
ing Cache Side-Channel Attacks UsingMachine Learning. AdvancedMicrokernel
Operating Systems 75 (2018).

[26] Swastika Dutta and Sayan Sinha. 2019. Performance Statistics and Learning
Based Detection of Exploitative Speculative Attacks. In CF. 206–210.

[27] Taher ElGamal. 1985. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE transactions on information theory 31, 4 (1985),
469–472.

[28] Yusi Feng, Ziyuan Zhu, Shuan Li, Ben Liu, Huozhu Wang, and Dan Meng. 2021.
Constant-Time Loading: Modifying CPU Pipeline to Defeat Cache Side-Channel
Attacks. In TrustCom. 1132–1140.

[29] Serena Ferracci. 2019. Detecting Cache-based Side Channel Attacks using Hard-
ware Performance Counters. Ph. D. Dissertation. Sapienza, University of Rome.

[30] Daniel Genkin, Romain Poussier, Rui Qi Sim, Yuval Yarom, and Yuanjing Zhao.
2020. Cache vs. Key-Dependency: Side Channeling an Implementation of
Pilsung. IACR Transactions on Cryptographic Hardware and Embedded Systems
2020, 1 (2020), 231–255.

[31] Jeferson Gonzalez-Gomez, Lars Bauer, and Jörg Henkel. 2023. Cache-based Side-
Channel Attack Mitigation for Many-core Distributed Systems via Dynamic
Task Migration. IEEE Transactions on Information Forensics and Security (2023).

[32] Nick Gregory and Kannan Harini. 2021. Using Undocumented Hardware Per-
formance Counters to Detect Spectre-Style Attacks. (2021).

[33] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches. InUSENIX Security.
897–912.

[34] David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache Games -
Bringing Access-Based Cache Attacks on AES to Practice. In IEEE SP. 490–505.

[35] Berk Gülmezoglu, Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. 2019.
FortuneTeller: Predicting Microarchitectural Attacks via Unsupervised Deep
Learning. CoRR abs/1907.03651 (2019).

[36] Berk Gülmezoglu, Andreas Zankl, M. Caner Tol, Saad Islam, Thomas Eisenbarth,
and Berk Sunar. 2019. Undermining User Privacy on Mobile Devices Using AI.
In AsiaCCS. 214–227.

[37] Ameer Hamza, Maria Mushtaq, Khurram Bhatti, David Novo, Florent Bruguier,
and Pascal Benoit. 2021. Diminisher: A Linux Kernel Based Countermeasure
for TAA Vulnerability. In ESORICS. 477–495.

[38] Jianyu Jiang, Claudio Soriente, and Ghassan Karame. 2022. On the Challenges
of Detecting Side-Channel Attacks in SGX. In RAID. 86–98.

[39] Daniel Katzman, William Kosasih, Chitchanok Chuengsatiansup, Eyal Ronen,
and Yuval Yarom. 2023. The Gates of Time: Improving Cache Attacks with
Transient Execution. In USENIX Security.

[40] Daniel Katzman, William Kosasih, Chitchanok Chuengsatiansup, Eyal Ronen,
and Yuval Yarom. 2023. The Gates of Time: Improving Cache Attacks with
Transient Execution. In USENIX Security.

[41] Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry
Evtyushkin, Dmitry Ponomarev, and Nael B. Abu-Ghazaleh. 2019. SafeSpec:
Banishing the Spectre of a Meltdown with Leakage-Free Speculation. In DAC.
60.

[42] Hodong Kim, Changhee Hahn, and Junbeom Hur. 2021. Real-Time Detection
of Cache Side-channel Attack Using Non-cache Hardware Events. In ICOIN.
28–31.

[43] Ofek Kirzner and Adam Morrison. 2021. An Analysis of Speculative Type
Confusion Vulnerabilities in the Wild. In USENIX Security Symposium. 2399–
2416.

[44] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative
Execution. (2019), 1–19.

[45] Yusuf Kulah, Berkay Dincer, Cemal Yilmaz, and Erkay Savas. 2019. SpyDetector:
An Approach for Detecting Side-Channel Attacks at Runtime. Int. J. Inf. Sec.
(2019), 393–422.

[46] David Lantz. 2021. Detection of Side-Channel Attacks Targeting Intel SGX.
[47] Congmiao Li and Jean-Luc Gaudiot. 2018. Online Detection of Spectre Attacks

Using Microarchitectural Traces from Performance Counters. In SBAC-PAD.
25–28.

[48] Congmiao Li and Jean-Luc Gaudiot. 2019. Detecting Malicious Attacks Ex-
ploiting Hardware Vulnerabilities Using Performance Counters. In COMPSAC.
588–597.

[49] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from
User Space. (2018), 973–990.

[50] Fangfei Liu, Qian Ge, Yuval Yarom, Frank McKeen, Carlos V. Rozas, Gernot
Heiser, and Ruby B. Lee. 2016. CATalyst: Defeating last-level cache side channel
attacks in cloud computing. In HPCA. 406–418.

[51] Fangfei Liu, Hao Wu, Kenneth Mai, and Ruby B. Lee. 2016. Newcache: Secure
Cache Architecture Thwarting Cache Side-Channel Attacks. IEEE Micro 36, 5
(2016), 8–16.

[52] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-
level Cache Side-Channel Attacks are Practical. In IEEE SP. 605–622.

[53] Jialin Liu, Ning Miao, Chongzhou Fang, Houman Homayoun, and Han Wang.
2023. Side Channel-Assisted Inference Leakage from Machine Learning-based
ECG Classification. arXiv 22304.01990.

[54] Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish
Narayanasamy, and Baris Kasikci. 2021. Dolma: Securing Speculation with
the Principle of Transient Non-Observability. In USENIX Security Symposium.
1397–1414.

[55] Maria Mushtaq, Ayaz Akram, Muhammad Khurram Bhatti, Maham Chaudhry,
Vianney Lapotre, and Guy Gogniat. 2018. NIGHTs-WATCH: A Cache-based
Side-Channel Intrusion Detector Using Hardware Performance Counters. In
HASP. 1:1–1:8.

[56] Maria Mushtaq, Ayaz Akram, Muhammad Khurram Bhatti, Maham Chaudhry,
Muhammad Muneeb Yousaf, Umer Farooq, Vianney Lapotre, and Guy Gog-
niat. 2018. Machine Learning for Security: The Case of Side-Channel Attack
Detection at Run-Time. In ICECS. 485–488.

[57] Maria Mushtaq, Ayaz Akram, Muhammad Khurram Bhatti, Vianney Lapotre,
and Guy Gogniat. 2018. Cache-Based Side-Channel Intrusion Detection using
Hardware Performance Counters. In CryptArchi.

[58] Maria Mushtaq, Ayaz Akram,Muhammad Khurram Bhatti, Rao Naveed Bin Rais,
Vianney Lapotre, and Guy Gogniat. 2018. Run-Time Detection of Prime+Probe
Side-Channel Attack on AES Encryption Algorithm. In GIIS. 1–5.

[59] Maria Mushtaq, Jeremy Bricq, Muhammad Khurram Bhatti, Ayaz Akram, Vian-
ney Lapotre, Guy Gogniat, and Pascal Benoit. 2020. WHISPER: A Tool for

13

https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
https://doi.org/10.1145/3560834.3563830
https://github.com/crozone/SpectrePoC


William Kosasih, Yusi Feng, Chitchanok Chuengsatiansup, Yuval Yarom, and Ziyuan Zhu

Run-Time Detection of Side-Channel Attacks. IEEE Access 8 (2020), 83871–
83900.

[60] Maria Mushtaq, David Novo, Florent Bruguier, Pascal Benoit, and Muham-
mad Khurram Bhatti. 2021. Transit-Guard: An OS-Based Defense Mechanism
Against Transient Execution Attacks. In ETS. 1–2.

[61] Maria Mushtaq, Muhammad Muneeb Yousaf, Muhammad Khurram Bhatti,
Vianney Lapotre, and Guy Gogniat. 2022. The Kingsguard OS-Level Mitiga-
tion Against Cache Side-Channel Attacks Using Runtime Detection. Ann. des
Télécommunications (2022), 731–747.

[62] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.
Keromytis. 2015. The Spy in the Sandbox: Practical Cache Attacks in JavaScript
and their Implications. In CCS. 1406–1418.

[63] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and
Countermeasures: the Case of AES. In CT-RSA. 1–20.

[64] Mathias Payer. 2016. HexPADS: A Platform to Detect "Stealth" Attacks. In ESSoS.
138–154.

[65] Colin Percival. 2005. Cache missing for fun and profit.
[66] Nikolaos Foivos Polychronou, Pierre-Henri Thevenon, Maxime Puys, and Vin-

cent Beroulle. 2021. MaDMAN: Detection of Software Attacks Targeting Hard-
ware Vulnerabilities. In DSD. 355–362.

[67] Iván Prada, Francisco D. Igual, and Katzalin Olcoz. 2019. Detecting Time-
Fragmented Cache Attacks Against AES Using Performance Monitoring Coun-
ters. In JCC&BD. 3–15.

[68] Moinuddin K. Qureshi. 2018. CEASER: Mitigating Conflict-Based Cache Attacks
via Encrypted-Address and Remapping. In MICRO. 775–787.

[69] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009.
Hey, You, Get Off of My Cloud: Exploring Information Leakage in Third-Party
Compute Clouds. In CCS. 199–212.

[70] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi Shamir, David Wong, and
Yuval Yarom. 2019. The 9 Lives of Bleichenbacher’s CAT: New Cache ATtacks
on TLS Implementations. In IEEE SP. 435–452.

[71] Majid Sabbagh, Yunsi Fei, Thomas Wahl, and A. Adam Ding. 2018. SCADET: A
Side-Channel Attack Detection Tool for Tracking Prime+Probe. In ICCAD. 107.

[72] Martin Schwarzl, Pietro Borrello, Andreas Kogler, Kenton Varda, Thomas Schus-
ter, Daniel Gruss, and Michael Schwarz. 2021. Dynamic Process Isolation. CoRR
abs/2110.04751 (2021).

[73] Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang. 2011. Limiting cache-
based side-channel in multi-tenant cloud using dynamic page coloring. In DSN
Workshops. 194–199.

[74] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek
Mittal, Yossi Oren, and Yuval Yarom. 2020. Robust Website Fingerprinting
Through the Cache Occupancy Channel. (2020), 639–656.

[75] Nikhilesh Singh and Chester Rebeiro. 2021. LEASH: Enhancing Micro-
Architectural Attack Detection With A Reactive Process Scheduler. CoRR
abs/2109.03998 (2021).

[76] Xiaojie Tao, Liming Wang, Zhen Xu, and Ru Xie. 2021. SCAMS: A Novel
Side-Channel Attack Mitigation System in IaaS Cloud. In MILCOM. 329–334.

[77] Daniel Terpstra, Heike Jagode, Haihang You, and Jack J. Dongarra. 2009. Collect-
ing Performance Data with PAPI-C. In International Workshop on Parallel Tools
for High Performance Computing. Springer, 157–173. https://doi.org/10.1007/978-
3-642-11261-4_11

[78] Zhongkai Tong, Ziyuan Zhu, Zhanpeng Wang, Limin Wang, Yusha Zhang, and
Yuxin Liu. 2020. Cache Side-channel Attacks Detection Based on Machine
Learning. In TrustCom. 919–926.

[79] Zhongkai Tong, Ziyuan Zhu, Yusha Zhang, Yuxin Liu, and Dan Meng. 2022.
Attack Detection Based on Machine Learning Algorithms for Different Variants
of Spectre Attacks and Different Meltdown Attack Implementations. CoRR
abs/2208.14062 (2022).

[80] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdomwith Transient
Out-of-Order Execution. In USENIX Security Symposium. 991–1008.

[81] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue In-Flight Data Load. In IEEE SP. 88–105.

[82] R. Vanathi and Sp. Chokkalingam. 2018. Cache-Based Side Channel attack
Discovery using Intelligent-Detection Algorithm for Securing the Cloud Com-
puting Environment.

[83] Han Wang, Soheil Salehi, Hossein Sayadi, Avesta Sasan, Tinoosh Mohsenin,
Sai Manoj P. D., Setareh Rafatirad, and Houman Homayoun. 2021. Evalua-
tion of Machine Learning-Based Detection Against Side-Channel Attacks on
Autonomous Vehicle. In AICAS. IEEE, 1–4.

[84] Han Wang, Hossein Sayadi, Gaurav Kolhe, Avesta Sasan, Setareh Rafatirad,
and Houman Homayoun. 2020. Phased-Guard: Multi-Phase Machine Learning
Framework for Detection and Identification of Zero-Day Microarchitectural
Side-Channel Attacks. In ICCD. 648–655.

[85] Han Wang, Hossein Sayadi, Setareh Rafatirad, Avesta Sasan, and Houman
Homayoun. 2020. SCARF: Detecting Side-Channel Attacks at Real-time using
Low-level Hardware Features. In IOLTS. 1–6.

[86] Limin Wang, Lei Bu, and Fu Song. 2022. Locality Based Cache Side-Channel
Attack Detection. International Workshop 87 (2022).

[87] LiminWang, Lei Bu, and Fu Song. 2023. SCAGuard: Detection and Classification
of Cache Side-Channel Attacks via Attack Behavior Modeling and Similarity
Comparison. In 2023 60th ACM/IEEE Design Automation Conference (DAC). IEEE,
1–6.

[88] Wubing Wang, Guoxing Chen, Yueqiang Cheng, Yinqian Zhang, and Zhiqiang
Lin. 2021. Specularizer: Detecting Speculative Execution Attacks via Perfor-
mance Tracing. In DIMVA. 151–172.

[89] Zhenghong Wang and Ruby B. Lee. 2007. New cache designs for thwarting
software cache-based side channel attacks. In ISCA. 494–505.

[90] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel
Gruss, and Stefan Mangard. 2019. ScatterCache: Thwarting Cache Attacks via
Cache Set Randomization. In USENIX Sec. 675–692.

[91] Minjun Wu, Stephen McCamant, Pen-Chung Yew, and Antonia Zhai. 2022.
PREDATOR: A Cache Side-Channel Attack Detector Based on Precise Event
Monitoring. In IEEE SEED. 25–36.

[92] Hui Yan and Chaoyuan Cui. 2022. CacheHawkeye: Detecting Cache Side
Channel Attacks Based on Memory Events. Future Internet 14, 1 (2022), 24.

[93] Mengjia Yan, Christopher W. Fletcher, and Josep Torrellas. 2020. Cache Telepa-
thy: Leveraging Shared Resource Attacks to Learn DNN Architectures. In
USENIX Security Symposium. 2003–2020.

[94] Mengjia Yan, Jen-Yang Wen, Christopher W. Fletcher, and Josep Torrellas. 2019.
SecDir: a secure directory to defeat directory side-channel attacks. In ISCA.
332–345.

[95] Yuval Yarom. 2016. Mastik: A Micro-Architectural Side-Channel Toolkit.
[96] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,

Low Noise, L3 Cache Side-Channel Attack. In USENIX Security. 719–732.
[97] Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2016. CacheBleed: A Timing

Attack on OpenSSL Constant Time RSA. In CHES. 346–367.
[98] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. 2016. CloudRadar: A Real-Time

Side-Channel Attack Detection System in Clouds. In RAID. 118–140.
[99] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2012. Cross-

VM Side Channels and Their Use to Extract Private Keys. In CCS. 305–316.
[100] Zhiyuan Zhang, Gilles Barthe, Chitchanok Chuengsatiansup, Peter Schwabe,

and Yuval Yarom. 2023. Ultimate SLH: Taking Speculative Load Hardening to
the Next Level. In USENIX Security.

[101] Beilei Zheng, Jianan Gu, Jialun Wang, and Chuliang Weng. 2022. CBA-Detector:
A Self-Feedback Detector Against Cache-Based Attacks. IEEE TDSC 19, 5 (2022),
3231–3243.

[102] Boyou Zhou, Anmol Gupta, Rasoul Jahanshahi, Manuel Egele, and Ajay Joshi.
2018. Hardware Performance Counters can Detect Malware: Myth or Fact?. In
AsiaCCS. 457–468.

14

https://doi.org/10.1007/978-3-642-11261-4_11
https://doi.org/10.1007/978-3-642-11261-4_11

	Abstract
	1 Introduction
	2 Background
	2.1 Caches
	2.2 Cache Side-Channel Attacks
	2.3 Transient Execution Attack
	2.4 Hardware Performance Counters.
	2.5 HPC-Based Cache Side-Channel Attack Detection Methods

	3 Review of HPC-based Cache Side-Channel Attack Detection Method Evaluation
	3.1 Accuracy
	3.2 Overhead
	3.3 Detection Speed
	3.4 Threat Model

	4 Assessing the Quality of Attack Detection Methods
	4.1 Experiment Environment
	4.2 Our Method
	4.3 Accuracy
	4.4 Overhead
	4.5 Detection Speed
	4.6 Threat Model

	5 Conclusions
	Acknowledgments
	References

