
General Store: Speculative Address Translation in x86 Processors

Yanik Kleibrink
Technical University of Darmstadt

Anirban Chakraborty
Max Planck Institute for

Security and Privacy

Yuval Yarom
Ruhr University Bochum

Abstract
The Spectre family of attacks exploits speculative execution to
access secret data and transmit it across isolation boundaries
using a microarchitectural covert channel. Whereas prior work
has predominantly examined the use of speculative loads for
constructing such channels, we investigate speculative stores
and flush operations across a wide range of Intel and AMD
processors. We find that speculative memory operations either
update the data cache or initiate page table walks. Depending
on the microarchitecture, the walk may complete and update
the TLB or be aborted after populating data caches, leav-
ing clear microarchitectural traces of the translation. We fur-
ther characterize the effects of page table attributes, memory
fences, and cache-coherence states on this behavior. Building
on these findings, we introduce a covert channel that lever-
ages only the page table walk activity of speculative stores to
encode information, without relying on store-induced cache
fills. Finally, we demonstrate that Speculative Load Hard-
ening (SLH)—a widely deployed Spectre-v1 mitigation in
LLVM—does not prevent speculative store-based leakage of
register values, consistent with its threat model and design
assumptions.

1 Introduction

The discovery of Spectre [18] in 2018 revealed that optimiza-
tion techniques in modern processors, such as speculative
execution, that were hitherto considered benign performance
improvements, can be exploited to leak sensitive informa-
tion through microarchitectural side channels. Since then, a
plethora of works [1, 2, 3, 4, 9, 10, 12, 15, 16, 17, 19, 23, 37]
have explored various facets of speculative execution at-
tacks that are collectively referred to as Spectre-class at-
tacks [7]. Unlike other microarchitectural attacks, such as
Meltdown [6, 20], Spectre-class attacks—specifically Spec-
tre-v1 (Spectre-PHT)—do not rely on specific software or
hardware vulnerabilities, but instead exploit the fundamental
design features of modern processors. Consequently, Spectre-
class attacks are considered harder to mitigate, as they often

necessitate substantial changes to processor architecture and
difficult to effectively address through microcode updates or
software patches alone [18].

A Spectre attack exploits speculative execution to exe-
cute code outside the nominal execution of the program. In
Spectre-v1 [18], speculation is the result of a mispredicted
conditional branch. Other variants of Spectre exploit other
speculation causes, such as indirect branches [18] or the re-
turn stack buffer [19, 23]. The mispredicted code accesses
secret data, e.g., bypassing a bounds check [18] or through
speculative type confusion [2, 17], and transmits it through a
microarchitectural covert channel. Most Spectre attacks use
the Flush+Reload channel [34]. However, other channels have
also been demonstrated [4, 15, 24, 29, 38].

Due to the prevalence of load-based covert channels for
Spectre-class attacks, the majority of defenses focus on re-
stricting load instructions [38] or mitigating their microar-
chitectural effects [32, 35]. In contrast, the role of store in-
structions in Spectre remains comparatively under-explored.
Dolma [22] observes that speculative stores can trigger page
table walks and potentially leak information through the trans-
lation lookaside buffer (TLB). Patrigniani and Guarnieri [27]
present a theoretical model in which speculative stores leak
both the accessed address and the stored data, motivating
store-protecting defenses such as USLH [38]. Although not
used for a Spectre-class attack, Zhang et al. [36] show how
to transmit information using transient writes in conjunction
with the MWAIT and MONITOR instructions. Similarly, mul-
tiple works show that address translation can leak sensitive
information through TLB state and page table walk side ef-
fects [5, 13, 14, 30, 39]. Beyond covert channels, Kiriansky
and Waldspurger [16] study how speculative stores interact
with younger speculative loads. However, despite this body of
work, the impact of address-translation effects speculatively
triggered by store and cache flush instructions has not, to the
best of our knowledge, been examined.

Contribution. In this paper, we closely investigate the in-
teractions between transient store and flush instructions and
the CPU memory subsystem, across multiple microrachitec-

1

tures. We expand and systematize prior work that already sug-
gests that speculative store instructions may trigger page table
walks [22] or observes that speculative stores can also bring
the targeted cache line into the cache on some microarchitec-
tures [25, 29]. We first map the behavior of the instructions
under speculation across a wide variety of Intel and AMD pro-
cessors. We examine multiple properties, including whether
they initiate a page table walk, to what extent the page table
walk proceeds, and the impact of fence instructions and page
permissions on the address translation process.

Our experiments show that in contrast with some older
microarchitectures, on many newer architectures speculative
store instructions do bring the targeted cache line to the cache.
Moreover, we find that while all tested instructions do start
the page table walk speculatively on nearly all microarchi-
tectures, the extent to which it proceeds varies significantly.
Notably, on several Intel processors, the page table walk can
be interrupted mid-way, preventing the translation from com-
pleting. In contrast, on AMD processors, the walk consistently
proceeds to completion regardless of speculation.

Building on our observations, we demonstrate a covert
channel that leverages speculative stores—not through direct
cache updates, but through leakage induced by the address
translation of speculative store targets. Finally, we evaluate
the effectiveness of compiler-based mitigations such as SLH
and USLH against store-based Spectre attacks and discuss
potential directions for mitigation.

In summary, the contributions of this work are:
• We evaluate the behavior of speculative stores, loads, and

flushes on different microarchitectures, revealing hitherto
unknown behavior (Section 3).

• We present a covert channel that leverages the side-effects
of the page table walk to encode information, while not
relying on store-induced cache fills (Section 4).

• We evaluate compiler-based mitigations, such as SLH and
USLH, against store-based Spectre attacks (Section 5).

Ethical Considerations and Open Science. Our work does
not exploit any new vulnerabilities. Consequently, we did not
engage in a formal vendor disclosure process. The source
code for all experiments is available at https://github.
com/0xADE1A1DE/GenStore.

2 Background

In this section, we review speculative execution, spectre
attacks and the address translation process on modern x86
processors.

2.1 Speculative and Out-of-Order Execution
Modern processors employ deep pipelines and complex mi-
croarchitectures to improve throughput and runtime perfor-

mance. These pipelines are generally divided into two stages:
a frontend, responsible for fetching and decoding instructions,
and a backend, that executes them and performs memory op-
erations. To exploit instruction-level parallelism, the frontend
can fetch and decode multiple instructions simultaneously,
while the backend may execute instructions out-of-order to
maximize utilization of execution units and other resources.
Consequently, the order in which instructions execute may dif-
fer from the program order specified by the programmer. To
ensure correct program semantics, the results of out-of-order
execution are committed in program order.

In many cases, the frontend cannot determine the out-
come of a branch until older instructions execute, which may
take many cycles. To avoid pipeline stalls, the processor pre-
dicts branch outcomes and speculatively executes instructions
along the predicted path. If the prediction is correct, execu-
tion proceeds without interruption, yielding a performance
benefit. Conversely, in the case of an incorrect prediction, the
speculatively executed instructions are squashed, and execu-
tion resumes along the correct path. Importantly, even when
rolled back, speculatively executed instructions can leave mi-
croarchitectural side effects, including cache or buffer state
changes, enabling attacks such as Spectre.

2.2 Spectre Attacks
A natural consequence of out-of-order and speculative exe-

cution is that instructions may execute transiently, even if they
would not appear in the nominal program order. Although
these instructions are eventually squashed, their microarchi-
tectural side effects—such as cache fills, TLB updates, or pre-
dictor state changes—can persist and be observed through side
channels. The Spectre family of attacks [18] demonstrates
how such transient execution can leak sensitive information.

In this paper, we focus on Spectre-v1 (Spectre-PHT), which
leverages speculative loads to access protected memory. In
this variant, an attacker mistrains a conditional branch so
that a subsequent load instruction speculatively reads from a
memory location that would be inaccessible under the correct
program flow. Listing 1 shows a minimal Spectre-v1 gadget.
By controlling index, the attacker can speculatively access
an out-of-bounds element of array1, and encode the value
of array1[index] into the cache state of array2. This state
can then be probed using a cache-based side channel, such as
Flush+Reload [34], to recover the secret.

1 if (index < array1_size) {
2 x = array2[array1[index] * 4096];
3 }

Listing 1: A simple Spectre-v1 gadget that leaks the value of
array1[index] through a cache-based side channel.

Defenses against Spectre can be broadly classified into

2

https://github.com/0xADE1A1DE/GenStore
https://github.com/0xADE1A1DE/GenStore

three categories: hardware changes, speculation barriers, and
compiler-based mitigations. In this work, we focus on the lat-
ter two. Speculation barriers, such as the LFENCE instruction
on x86 processors, prevent execution of instructions follow-
ing the barrier until all instructions before it commit. Insert-
ing a speculation barrier at each possible outcome of con-
ditional branches prevents the attack, albeit at a significant
performance cost [18]. Furthermore, it is currently unknown
whether all speculation barriers are effective against all forms
of speculation—for example, some barriers may prevent spec-
ulative instruction execution but may still allow speculative
address translation.

Compiler-based countermeasures, such as Speculative
Load Hardening (SLH) [8], protect against leaks by track-
ing the speculation state and masking the results of loads
on mis-speculated paths. However, previous works [38] have
shown that SLH may be bypassed in certain scenarios, par-
ticularly when combined with other microarchitectural fea-
tures [32, 35]. Furthermore, SLH primarily focuses on loads,
leaving the behavior of stores under speculation less explored.

2.3 Address Translation in x86 Processors

Modern processors use virtual memory to provide each pro-
cess with an isolated address space. When a memory instruc-
tion references a virtual address, the processor must translate
it to a physical address using a multi-level page table hier-
archy managed by the operating system. This translation is
performed by the Memory Management Unit (MMU) through
a series of page table lookups.

The virtual address is divided into multiple fields to index
into the page tables. Modern x86 processors use a hierarchical
structure with four or five levels for page tables. As all of our
test machines use a four-level hierarchy, our description is
limited to that case. For 4 KB pages, the 16 most significant
bits of the virtual address are ignored, the next 36 bits are
split into four 9-bit sections that index into the four page
table levels, and the 12 least significant bits specify the offset
within the target page. Each page table entry (PTE) contains
the physical address of the next-level page table along with
permission and status bits. The final-level PTE provides the
physical address of the target page.

Figure 1 illustrates the address translation process on mod-
ern x86 processors. To translate a virtual address, the MMU
performs a page table walk (PTW), starting from the root of
the hierarchy (the PGD) and using the relevant bits of the vir-
tual address to index sequentially into each level. To reduce
the overhead of consulting four (or five) translation tables
for each memory access, modern processors cache complete
address translations in a dedicated cache, called Translation
Lookaside Buffer (TLB), and intermediate higher-level page
table entries in page walker caches, also known as page struc-
ture caches in the Intel nomenclature.

Crucially for speculative execution, speculative loads and

Offset in PageIndex in
Level 1 PT

Index in
Level 2 PT

Index in
Level 3 PT

Index in
Level 4 PT

01112202129303839474863

PT
E

3

PT
E

4

PT
E

2

PT
E

1

Ta
rg

et

Main Memory

CR3

Level 4 PT
(Page Global Directory)

Level 4 PTE

Level 3 PT
(Page Upper Directory)

Level 3 PTE

Level 2 PT
(Page Middle Directory)

Level 2 PTE

Level 1 PT

Level 1 PTE +

Figure 1: The address translation process on modern Intel
and AMD Processors. PTE is used as an abbreviation of page
table entry, and PT is an abbreviation of page table.

stores may trigger page table walks even if the instructions are
eventually squashed. On some microarchitectures, speculative
accesses can bring intermediate or final PTEs into the cache
or TLB, producing observable microarchitectural side effects.
Speculative stores, in particular, may not update architectural
state but can still cause cache footprints via address trans-
lation, forming the basis for the store-based side channels
analyzed in this work.

3 Analysis of Speculative Store Operations

To understand how transient stores interact with the memory
hierarchy, particularly whether they trigger address transla-
tions and how far the page table walk progresses, we now
analyze the behavior of speculative store instructions across
a wide range of Intel and AMD processors. We further exam-
ine the effects of fence instructions on speculative stores and
the influence of various page permission bits. In particular,
we seek to answer the following research questions:

RQ1: Do speculative stores trigger address translations, and
if so, how far does the page table walk progress?

RQ2: How do fence instructions affect the address transla-
tion process of speculative stores?

RQ3: How do different page permission bits influence the
behavior of speculative stores?

To address these questions, we employ a two-part experi-
mental setup. First, we design a speculation gadget based on
return stack buffer (RSB) speculation to reliably trigger spec-
ulative stores. This approach allows us to create a controlled
transient execution window without the need for complex
branch predictor training. Second, we develop a custom Linux
kernel module that provides fine-grained control over the page
table layout in memory. This module enables us to manipu-
late page table entries and permissions, facilitating detailed
analysis of the address translation process during speculative
store operations.1

1Parts of the functionality are similar to https://github.com/
misc0110/PTEditor.

3

https://github.com/misc0110/PTEditor
https://github.com/misc0110/PTEditor

1 call level_a
2 jmp end
3 level_a:
4 call mispredict_return
5 # Code executed speculatively (Here a memory

instruction)↪→

6 lfence # Prevent the execution from speculatively
continuing past this point.↪→

7 mispredict_return:
8 pop %rdi # Pop the top of the return stack
9 clflush (%rsp)

10 cpuid
11 ret # Speculatively returns to line 5
12 end:

Listing 2: Code for triggering transient execution via return-
stack speculation.

3.1 Speculation Gadget Design

The original Spectre-v1 attack [18] uses conditional branches
to trigger speculative loads (cf. Section 2.2). However, train-
ing conditional branches can be noisy and slow, leading to
inconsistent speculation windows. To achieve more reliable
control, we instead employ Return Stack Buffer (RSB)-based
speculation [19, 23, 31] to trigger speculative store instruc-
tions. The RSB is a hardware structure that stores the return
addresses of recently executed CALL instructions. When a
return instruction is next encountered, the processor predicts
its target by popping the top entry from the RSB. If the RSB
no longer syncs with the architectural call stack—for instance,
due to deliberate modifications of the stack pointer—the pro-
cessor may speculatively return to an incorrect address, caus-
ing transient execution along a mispredicted path.

Listing 2 shows our speculation gadget, which con-
sists of two nested calls, first to level_a and then to
mispredict_return. These calls push return addresses both
onto the software stack and into the RSB. Now, we manually
modify the top of the stack (line 8), thereby desynchronizing
the stack and the RSB. Next, we flush the cache line contain-
ing the top of the return stack (line 9) to delay the resolution
of the true return address. When the subsequent RET (line 11)
is encountered, the processor cannot immediately retrieve
the correct return address from memory and therefore spec-
ulatively returns to the stale entry still present in the RSB,
i.e., the instruction following the call to mispredict_return
(line 5). Finally, to detect the presence of cache lines in the
data caches, we measure the time to access them using the
RDTSCP or RDPRU instructions.

3.2 Kernel Module for Page Table Control

Our evaluation requires fine-grained control over page table
state, which is not accessible from user-level program in Linux
due to security restrictions. To enable this, we develop a cus-
tom Linux kernel module that allows us to allocate pages, set

0 200 400 600 800 1000 1200
Time

0%

20%

40%

60%

80%

100%

No
rm

al
ize

d
Fr

eq
ue

nc
y

Target Cached
Target Flushed
TLB Entry Invalidated

Level 1 PTE Flushed
Level 2 PTE Flushed

Level 3 PTE Flushed
Level 4 PTE Flushed

Figure 2: Time to load a target memory address with subsets
of its page table entries (PTE) flushed. Here i PTE flushed
means that all lower level PTEs are flushed as well.

up multi-level page tables, control the state of the data cache,
TLB, and page walker caches (PWC), and modify page table
entry (PTE) attributes.

At initialization, the kernel module allocates a page that
serves as the target of the speculative memory operation. Ini-
tially, the target page shares higher-level page table entries
with the stack (rsp), which prevents independent cache con-
trol of the corresponding PTEs.

To avoid any overlap between the page table walks of the
rsp and the speculative target, we remap the target’s phys-
ical page to a virtual address that differs from the rsp in
bits [47:42]. This ensures that the PTEs of the two addresses
reside in distinct cache lines, preventing a page table walk for
one address from inadvertently loading PTEs of the other.

A page table walker routine exposes the (virtual) addresses
of the PTEs corresponding to the target page. To validate
these mappings, we ① flush the PTEs from the TLB and
PWCs using the INVLPG instruction, ② systematically flush
higher-level PTEs from the memory caches, and ③ measure
the resulting access latency to the target page. The invalidation
of the TLB and PWCs forces the processor to walk the page
table, and thus load all PTEs, to resolve the target address.
Each additional page table level flushed from the memory
caches incurs an additional load from DRAM and thus results
in a measurable increase in the access latency (cf. Figure 2).
This delay confirms that the flushed entries correspond to
valid PTEs in the translation hierarchy.

3.3 Experimental Setup and Evaluation

We now describe the experimental setup and our observations
regarding the behavior of speculative store operations across

4

Figure 3: Progress of the PTW of a speculative store to a target memory address.

various processors.

Platform Configuration. We conduct our experiments on
a diverse set of Intel and AMD processors, spanning multi-
ple microarchitectures and generations. (See Table 3 in the
Appendix for full details.) All machines run Linux with ker-
nel versions ranging from 5.5 to 6.17, with IBT disabled, as
required for our kernel module. In each machine, all cores
except core 0 and the core that executes the experiment are
disabled. To reduce noise due to timing variations, we dis-
able frequency scaling by setting the scaling_governor
to performance. To ensure the largest possible consistency
across the different operating system environments, we stati-
cally compile all of our tests with musl2 using GCC 10 and
distribute those static executables to all of the test machines.

Methodology. We use the RSB speculation gadget (cf. Sec-
tion 3.1) to induce speculative memory operations (e.g., a
store) to a chosen target address and manipulate the cor-
responding page table entries via our custom kernel mod-
ule (cf. Section 3.2). To characterize how page table walks,
fence instructions, and page-permission bits affect speculative
stores, we run a suite of controlled experiments. Each test is
configured from user space via an ioctl call that conveys the
memory-operation type and the desired microarchitectural
state (TLB, PWC, and data caches). A second ioctl supplies
a user-space buffer into which the kernel writes the observed
timing-frequency histogram, enabling efficient collection of
large sample sets.

Execution proceeds in five stages. First, the microarchitec-
tural state is prepared by selectively loading or flushing the
target and related page table entries to achieve the desired
baseline configuration. Second, the specified page table entry
attributes (e.g., present, accessed, user, writable), that generate
exceptions, are modified as side-effects of other instructions,
or are architecturally incorrect, are adjusted to reflect the de-
sired configuration. These control the behavior of memory

2https://musl.libc.org/

accesses during the transient execution window. Third, the
RSB speculation gadget that performs speculative store oper-
ations to the target address is triggered. Fourth, any modified
PTE attributes are restored to their original state to ensure
architectural correctness. Finally, the latency of accessing
the target or its page table entries is measured to observe
the effects of speculative stores on the memory hierarchy.
Furthermore, to mitigate system noise and ensure statistical
significance, each test is repeated for a minimum duration
and iteration count. We defer a more detailed explanation of
the test phases to the subsequent sections, where we discuss
specific experiments.

Results and Observations. To validate our premise that
address translation, and the associated PTW it can trigger,
lead to a meaningful and detectable trace in the caches, we
utilize our custom Linux kernel module to flush a target from
all caches and invalidate its entries in the TLB / PWC. Af-
terwards, the load of target is timed while iteratively flushing
higher PTEs. The results are presented in Figure 3. As ex-
pected the latency of the load of target increases by about 1
DRAM access latency for each additional PTE flushed from
the caches.

Using our custom Linux kernel module, we next study the
PTW started by a speculative memory operation by precisely
observing which PTEs are loaded by the table walk as it
progresses (cf. Figure 3 or Appendix, Table 4). To analyze
the effects of the length of the transient window, it is slowly
increased. On AMD Zen processors, we observe that a PTW
is never stopped or interrupted once started. On Intel the PTW
can be interrupted on all generations from Sandy Bridge to
Alder Lake. In particular, increasing the length of the transient
window allows the PTW to progress further.

Table 1 shows a concise summary of our results. For each
configuration, we examine whether a PTW is started (),
whether the TLB is also updated (), and whether the target
is cached (). Crucially we observe that in nearly all cases
all memory operations (e.g., CLFLUSH) that require virtual
address translation can speculatively start this address transla-

5

https://musl.libc.org/

Table 1: Effects of speculative execution on the address translation process. A cross () indicates that the address translation
process does not start. An empty circle () means that the PTW starts but the TLB does not update. In the case of a half circle
(), the TLB is updated and a full circle () indicates that the target line is cached in the D-caches. The abbreviations NA = not
accessed and RO = read-only are used.
∗ indicates that the test runs in user mode, with the only possible results being cached () and uncached ().
† indicates that TLB updates are not checked for this test.

Loads Stores Flushes

R
eg

ul
ar

SF
E

N
C

E

M
FE

N
C

E

L
FE

N
C

E

E
xc

lu
si

ve
∗

M
od

ifi
ed

∗

Sh
ar

ed
∗

R
O

Pa
ge

C
le

an
Pa

ge

N
A

Pa
ge

†

R
eg

ul
ar

SF
E

N
C

E

M
FE

N
C

E

L
FE

N
C

E

E
xc

lu
si

ve
∗

M
od

ifi
ed

∗

Sh
ar

ed
∗

R
O

Pa
ge

C
le

an
Pa

ge

N
A

Pa
ge

†

R
eg

ul
ar

SF
E

N
C

E

M
FE

N
C

E

L
FE

N
C

E

R
O

Pa
ge

C
le

an
Pa

ge

N
A

Pa
ge

†

Sandy Bridge (Sandy Bridge)
Skylake (Skylake)
Coffee Lake (Skylake)
Comet Lake (Skylake)
Rocket Lake (Cypress Cove)
Alder Lake (P-Core) (Golden Cove)
Alder Lake (E-Core) (Gracemont)
Summit Ridge (Zen)
Vermeer (Zen 3)

tion despite the memory operation itself never being specula-
tive. This can only be prevented by inserting an LFENCE or
SFENCE before the memory operation. Interestingly, the be-
havior concerning speculative stores has changed frequently
between the microarchitectures with newer Intel architectures
all exhibiting some type of caching for speculative stores and
older architectures usually only updating the TLB but not
caching the memory operand. On all AMD Zen processors
the target of the speculative store is cached.

Observation 1: Instructions with a memory operand
(e.g., CLFLUSH), whose effect (e.g., flushing the memory
operand’s cache line) is never realized in a transient con-
text, can still trigger address translation of the operand
inside the transient window.

Observation 2: On newer architectures the targets of
speculative stores and loads can be cached irrespective of
the coherency state.

3.4 Page Table Walk of Speculative Memory
Instructions

We now analyse the address translation process of speculative
memory operations (load, store and flush) to understand
how far the page table walk progresses and whether the TLB
is updated.

To this end, we first study whether speculative memory
operations lead to the caching of their target memory operand.
The operand is first flushed from all data caches and then
the RSB gadget is used to trigger the speculative execution

of the memory operation. The time to access the memory
operand afterwards reveals the caching effect and the progress
of the page translation process. As shown in the previous
subsection (cf. Figure 2), the range of access time can be used
to distinguish between different cache and TLB states.

We first observe that, with the exception of Gracemont,
speculative loads always bring their target into the data caches.
This is shown under the Regular column for load in Table 1
where all other tested processors show a full circle () indicat-
ing that the target was cached. Speculative stores also bring
their target into the data caches (in store under Regular
column) on all AMD Zen architectures and on Intel microar-
chitectures starting from 8th Generation (Coffee Lake). How-
ever, on older Intel microarchitectures (e.g., Sandy Bridge and
Skylake), speculative stores do not bring their target into the
data caches (in store under Regular column). Furthermore,
we observe that speculative clflush operations never bring
their target into the data caches (in flush under Regular
column) across all tested processors. Note that on Gracemont,

means that the target is not cached. This observation only
pertains to kernel-space executions, in user-space speculative
stores are also cached.

As we observe that certain processor families do not bring
the target of speculative stores and flushes into the data caches,
we next investigate how far the page table walk progresses
while translating the target virtual address of a speculative
store. In particular, we monitor the loading of the individual
PTE entries from different levels of the page table hierarchy
into the data caches by the PTW. While the activation of the
PTW can be detected by the delay it causes to the associated
memory operation (cf. Figure 2), directly timing the loads of
the individual PTEs allows for a fine-grained observation of

6

when which PTE was loaded.

It is important to note that the RSB gadget creates a tran-
sient window that lasts until the load that resolves rsp com-
pletes. The duration of this window therefore bounds how far
a page table walk (PTW) can progress. Consequently, a spec-
ulative address translation can produce two distinct outcomes:
(1) the PTW completes and the translation is available in the
TLB, or (2) the PTW is aborted before it reaches the page
table level being monitored.

To test whether speculative address translations populate
the TLB, we first trigger a speculative memory access whose
translation is expected to complete within the transient win-
dow. Next, we flush all page table cache lines from the data
caches while explicitly preserving the corresponding TLB
entry, and evict the target line itself. Finally, we issue an archi-
tectural load to the same virtual address. If this load completes
without invoking a new page table walk, we conclude that the
translation had been installed in the TLB during speculation.
The triggering of a PTW can be detected either by measuring
the load latency (cf. Figure 2) or by directly timing accesses to
the level 1 PTE. We observe that, with the exception of Sum-
mit Ridge, the TLB is always updated when a PTW is started.
In particular, this pertains to all examined Intel processors.

Similarly, to provoke PTW aborts we rely on the RSB
gadget to create a transient execution window whose length
depends on the latency of resolving the return address (rsp).
We extend this window by flushing the PTEs that map rsp
so that their translation requires main-memory accesses.3

Before each trial we establish a clean baseline by flushing the
target, invalidating its TLB and PWC entries, and evicting all
candidate PTE cache lines. We then execute the RSB gadget
and, immediately after speculation, time loads to each PTE
(and to the target) to determine which entries the PTW fetched.
Figure 3 shows the result for all processor generations.4 Note
that the PTW completes even for the relatively short transient
window created by only flushing the rsp on Summit Ridge.
This leads us to conclude that PTWs on AMD processors are
never interrupted.

By tuning the transient-window length in this way, we can
control the PTW’s abortion point so that only PTEs above a
chosen level are fetched. This enables a practical framework
to observe the PTW progression and can be used to construct
a page-walk side-channel order oracle [30]. With the win-
dow set to approximately a single memory-access duration,
repeated trials permit the PTW to fetch PTEs incrementally
from the highest level down.

3Alternatively, it is possible to introduce a data dependency that prevents
rsp from being resolved until other memory operations complete. Regardless,
the remapping of target remains necessary to avoid sharing higher-level PTEs
with other pages.

4On Gracemont, we could not observe any caching of PTEs usually
associated with a PTW, see also Table 4 in the Appendix.

Observation 3: On nearly all tested processors, specula-
tive memory operations trigger page table walks, and the
address translation is cached in the TLB. Moreover, these
page table walk might always be interrupted.

3.5 Effect of Fencing on Address Translation

Since the inception of speculative execution, it has been well
understood that certain fence instructions can prevent spec-
ulation across instruction boundaries [7, 18]. However, the
precise impact of these fences on the address translation of
subsequent memory operations remains unexplored. In the
previous subsection, we showed that speculative memory op-
erations can trigger page table walks and update the TLB. We
now investigate whether fence instructions can prevent this.

For these experiments, we first flush the top entry of the
RSB and all its corresponding page table entries from every
cache level. Next, we flush the target address, its entries in
the TLB and page-walk caches, and its level-1 PTE. From
the results of the previous section, we know that this tran-
sient window is sufficiently long for a full page table walk
and the caching of the target (for both load and store opera-
tions) to complete. We then insert the fence instructions under
test (LFENCE, MFENCE and SFENCE) immediately before the
memory instruction in line 5 of Listing 2. This placement
allows us to directly observe whether the fence delays or sup-
presses the initiation of the page table walk and to analyze its
effect on the caching behavior of the memory instruction.

Figure 4 shows the results of this experiment for the Intel
Core i7-8700 (cf. also Table 6 in the Appendix). The lfence
and mfence instructions completely prevent the address trans-
lation and caching of the target of a transient load and store.
An sfence instruction permits the address translation to com-
plete and the target to be loaded.

Observation 4: On all tested microarchitectures,
MFENCE and LFENCE effectively prevent both the specu-
lative execution and any associated address translation of
memory operations.

3.6 Effect of Different Page Attributes

In addition to fences, page attributes can also influence how
speculative memory operations interact with the address-
translation machinery. In this subsection, we examine how
specific page attributes affect the initiation of page table walks
and the caching of the target of a transiently executed memory
operation. In particular, we focus on three page table flags:
dirty, writable, and accessed.

We leverage our custom kernel module to manipulate the
page attributes of the target address. While most page table
attributes can be modified without interfering with normal

7

NONE
0

50
100
150
200
250
300
350
400
450

Ti
m

e

SFENCE MFENCE LFENCE

Load (Target Cached)
Store (Target Cached)
Flush (Target Cached)

Load (PTE Cached)
Store (PTE Cached)
Flush (PTE Cached)

Figure 4: A speculative memory operation (i.e., a load, a
store, or a flush) is positioned immediately behind a fence
(i.e., SFENCE, MFENCE, LFENCE) inside a transient window.
The plot shows the loading times of the target’s and its level 1
PTE’s cache line. A small loading time, inside the gray rectan-
gle, indicates that the cache line was cached as a side-effect of
the transient memory operation. The width of the horizontal
bars indicates the frequency of the associated timing value.
The results pertain to the Intel i7-8700.

execution, some attributes might cause exceptions or be auto-
matically modified upon access. Therefore, we set these criti-
cal attributes immediately before invoking the RSB gadget,
ensuring that only the transient memory operation observes
them. After speculative execution of the target, we restore
the PTEs to an architecturally safe state. For example, the
accessed flag must be cleared before every test run, since
even the measurement code would otherwise set it again. Note
that this restoration step involves a TLB invalidation, which
prevents a direct examination of the TLB contents after the
transient phase.

We systematically test speculative memory operations
targeting pages that are clean (i.e., dirty=0), read-only
(writable=0), or not accessed (accessed=0). Across all
tested configurations, except possibly Gracemont, where the
PTEs are not cached, we observe that a page table walk is al-
ways initiated.5 Furthermore, the address translation is cached
except on Summit Ridge, where speculative TLB updates do
not appear. Speculative stores to read-only or clean pages trig-
ger page table walks but do not cache the target line (cf. Fig-
ure 5). For clean pages, we attribute this behavior to the fact
that updating the dirty flag is handled by microcode assists
that appear to be disabled or not performed during speculation.
A similar explanation applies to speculative loads to pages
with the accessed bit unset— these loads do not appear to be
cached, presumably because the microcode responsible for
updating the accessed bit is also not executed under specula-

5Compare Table 5 in the Appendix.

NONE
0

50
100
150
200
250
300
350
400
450

Ti
m

e

READ-ONLY DIRTY CLEAN

Load (Target Cached)
Store (Target Cached)
Flush (Target Cached)

Load (PTE Cached)
Store (PTE Cached)
Flush (PTE Cached)

Figure 5: Loading times of a target and its level 1 PTE after a
speculative memory operation with a memory operand on a
page with the specified page attributes. The tests were run on
the Ryzen 5950X.

tion. It should be noted, however, that caching during such
accesses cannot be entirely excluded, as the latency of the
microcode assist that updates the page flags may exceed the
time required for a memory load, even when all page table
entries are already cached in the L1 cache.

Observation 5: Page attributes never prevent the ad-
dress translation process from being initiated, but they can
prevent the target of a speculative memory operation from
being cached.

3.7 Effect of Coherency Protocol States
Multiprocessor systems maintain cache coherence by associ-
ating each cache line with a coherency state. This subsection
examines whether the coherence state of a cache line affects
its caching behavior when accessed transiently during specu-
lative execution.

Contrary to the previous experiments, all tests in this sec-
tion are implemented entirely in user space using multiple
helper threads, without involving the kernel module. This
setup does not allow us to directly examine potential effects
of coherence states on the PTW or TLB. However, we assume
that coherence states do not influence address translation, as
they are associated with the physical address of a cache line
rather than its virtual address.

Depending on the coherence state being tested, one or two
helper threads are spawned and pinned to distinct CPU cores
other than the test core. In particular, testing the shared state
requires the presence of at least 3 hardware cores. Next, the
cache line is flushed and the thread conducting the test signals
the helper threads: For the exclusive state, a single helper
thread loads the cache line, while for the modified state it

8

NONE
0

30
60
90

120
150
180
210
240
270
300
330
360
390

Ti
m

e

MODIFIED EXCLUSIVE

Load Store

Figure 6: Speculative loads and stores to cache lines either
flushed, or in the modified or exclusive coherency states.
These results are presented for the Intel i5-6260U (Skylake),
where speculative stores do not alter the cache.7

stores a value to the cache line. In the case of the shared state,
both helper threads load the cache line. After this preparation,
the RSB gadget from before is used to trigger a transient
window inside which the memory operation is executed.

Interestingly, on all CPU architectures where the memory
operand is cached, the memory operand is cached again re-
gardless of the coherency state. Interestingly, on older CPU
architectures, where speculative stores to flushed targets do
not affect the cache, we now observe that they do when the
cache line is in the modified or exclusive state. We speculate
that this is caused by the other core holding the cache line
directly forwarding it to the requesting core.

Observation 6: Regardless of the coherency state a
cache line is in, speculative loads and stores to it can be
cached.

4 Covert Channel

The experiments in the previous section showed that spec-
ulative stores can influence the data cache on certain pro-
cessor generations, while on others they only initiate the ad-
dress translation process without affecting the cache state. For
processors where speculative stores modify the data cache,
building a covert channel follows the same principle as prior
cache-based channels that use speculative loads to exfiltrate
data from protected regions. In contrast, on processors where
speculative stores do not affect the cache, we construct a
covert channel that leverages the page table walk triggered by
a speculative store, whose address translation is not cached, to

7Our current implementation of the test of the coherency state SHARED
requires at least 3 physical cores. Hence this test is not available for the Intel
i5-6260U.

encode information into the caching of page table structures.
This demonstrate that the microarchitectural traces left by the
page table walks of transient store instructions are sufficiently
pronounced to be reliably used to breach process isolation. As
the Skylake i5-6260U is the newest Intel processor generation
where speculative stores do not affect the cache, we focus on
evaluating the constructed covert channel on it.

Threat Model. We assume two unprivileged user-space
processes, a sender and a receiver, executing on separate cores
with distinct virtual address spaces. The sender encodes se-
cret information through speculative stores, while the receiver
decodes it by monitoring the cache using Prime+Probe [26].
The receiver is assumed to have access to huge pages. Impor-
tantly, both processes operate entirely in user space and are
not subject to kernel-level isolation or privilege boundaries,
unlike the kernel module used in the previous experiments.

4.1 Sender
The fundamental mechanism relies on the fact that specula-
tive stores trigger page table walks that access level 1 PTEs,
which are then observable through cache side channels. When
a speculative store is triggered whose translation is not cached
in the TLB, the processor performs a page table walk to re-
solve the address translation. During this walk, the level 1
PTE is loaded into the cache hierarchy, creating measurable
cache effects that the receiver can detect.

Setting up the Address Pool. To ensure that page table
walks reliably occur and that the accessed PTEs map to LLC
sets monitored by the receiver, the sender must exercise pre-
cise control over the physical addresses of the level 1 PTEs.
However, as an unprivileged user-space process, the sender
has limited control over physical memory allocation. The
sender addresses this constraint through careful selection of
virtual addresses.

Concretely, the sender allocates pages with mmap at virtual
addresses whose 21 least-significant bits are zero. For 4 KB
pages, the virtual-address fields map as follows: bits [11:0] are
the page offset and bits [20:12] are the level-1 (PT) index. By
setting the bits [20:0] of the virtual address to zero, the sender
ensures that the corresponding level 1 PTE resides at index 0
within the level 1 page table. This placement guarantees that
the PTE is located at offset zero within the page containing
the level 1 page table, which means the least significant 12
bits of the PTE’s physical address are also zero. While the
sender cannot control the higher-order bits of the physical ad-
dress (which are determined by the kernel’s page allocation),
this approach constrains the physical address to page-aligned
boundaries. When speculative stores to such addresses trigger
page table walks, the resulting level 1 PTE loads are cached,
even though the speculative stores themselves do not modify
the cache state. By having the receiver monitor a sufficiently

9

large subset of LLC sets that could contain these page-aligned
addresses, the sender can reliably induce detectable cache
conflicts.

Manipulating the Address Translation. Unlike the kernel
module discussed in Section 3.2, the sender cannot execute
privileged instructions such as INVLPG to invalidate cached
address translations and force page table walks.8 To ensure
that speculative stores consistently trigger page table walks,
the sender must prevent the relevant address translations from
remaining cached in the TLB. We achieve this by maintaining
a pool of virtual addresses and continuously issuing specula-
tive stores across this pool. As speculative stores affect the
TLB, stores to different addresses within the pool cause mu-
tual TLB evictions, preventing stable caching of translations.
On older microarchitectures (e.g., Intel Sandy Bridge), this
behavior takes place automatically, as TLB sets are indexed
linearly by portions of the virtual address [14]. Therefore, the
pool size must be sufficiently large to ensure that translations
are evicted before they can be reused, guaranteeing that each
speculative store triggers a fresh page table walk. Below, we
provide the actual number of addresses used by the sender
and receiver for optimized channel performance.

Pruning the Address Pool. Ideally the receiver only needs
to monitor one LLC set, where all of the level 1 PTEs in the
address pool map to this set. If the sender is permitted to issue
non-speculative loads with a target in its pool of addresses,
it can prune its pool to a collection of addresses that form
a so-called TLB-PTE eviction set: The level 1 PTEs of the
addresses collide in the TLB and in the LLC. As long as
this eviction set is larger than the largest associativity of the
TLB and LLC, issuing speculative loads, stores, and flushes to
these addresses in a loop will cause a PTW to be triggered for
each as they all contend for the same TLB set and the resulting
load of the level 1 PTE will generate significant contention
on 1 LLC set, namely that of the target. If, furthermore, these
addresses do not themselves contend for the same cache line,
repeated speculative loads or even flushes to these address
are essentially equivalent to a regular load of the level 1 PTE,
which then forms an LLC eviction set.

Concretely, pruning works as follows: ① The receiver is
started first and only observes one LLC set. Note that the
Prime step of Prime+Probe will naturally evict all other cache
lines from the LLC set, including any level 1 PTEs of the
senders address pool that map to the LLC set. Note that this
explicitly requires that the caches are inclusive. ② The sender
first prunes the address pool to addresses that map to the
same TLB set. This can be achieved by either building a TLB
eviction set or by using the reverse-engineering of TLB hash

8Even if the sender could use it, INVLPG is likely undesired because it
flushes page walker caches, causing additional loads for all levels of page
tables. These additional loads increase latency and reduce channel capacity.

functions [14] as we elected to do here. ③ To check whether
the level 1 PTE of an address in the pool collides with the
LLC set selected and monitored by the receiver, the sender
first loads the address. Then it uses loads to other addresses
in its pool to evict the TLB entry that its initial load created.
By offsetting these addresses inside their respective pages
it is possible to prevent these other loads from evicting the
target of the pool address under investigation from the cache.
Finally, the sender loads the original address again. If the load
is fast, this means that the target and the level 1 PTE (the TLB
entry was evicted) are still cached. Hence the level 1 PTE
entry cannot lie in the LLC set monitored by the receiver as,
in that case, the Prime step would have evicted it. If, however,
the load takes longer, it is likely that the level 1 PTE was
evicted as the previous memory operations were especially
crafted to avoid the target.

Signal Encoding. Similar to Zhang et al. [36], we adopt
the Manchester encoding to transmit information over the
channel. The sender encodes information by modulating the
rate of speculative store operations. Furthermore, to improve
the timing of the RSB gadget, the sender uses an LFENCE
instruction instead of CPUID, which prevents subsequent page
table walks from starting and reduces the execution time of
the gadget from roughly 1100 to 220 cycles. To transmit a
high signal (logical ‘1’), the sender continuously issues spec-
ulative stores, inducing frequent page table walks and PTE
loads. To transmit a low signal (logical ‘0’), the sender does
not issue store operations, allowing the receiver’s eviction sets
to remain unchanged in the cache. The actual bit sequence to
be transmitted is encoded using Manchester encoding [11],
where each bit transition introduces a lower-frequency com-
ponent in the signal. This ensures reliable synchronization
between the sender and receiver.

4.2 Receiver
The receiver’s objective is to detect the sender’s activity by
observing cache effects created when level 1 PTEs are loaded
during page table walks. As the sender modulates the rate of
speculative stores, the frequency of these PTE loads varies
accordingly. The receiver therefore monitors last-level cache
(LLC) sets that could contain page-aligned physical addresses
of level 1 PTEs and extracts a Manchester-encoded bitstream
from the resulting activity trace.

Monitoring the LLC. The receiver observes the covert
channel by detecting cache conflicts caused by the sender’s
speculative stores. Recall that the sender transmits informa-
tion by inducing page table walks that load level-1 page table
entries at page-aligned physical addresses, which in turn cre-
ate conflicts in the LLC. It then uses a standard Prime+Probe
technique [21, 26] to monitor these eviction sets. In partic-
ular, first huge pages are used to construct a pool of virtual

10

Figure 7: Decoding a noise trace captured by the receiver.

addresses that map to the same set in each LLC slice. This
collection of addresses is then pruned to a minimal eviction
set of each LLC set by selecting an address in it at random
and then iteratively removing an address from the set and
testing whether the remaining addresses still conflict with the
chosen address. If they do the removed address does not form
part of an eviction set of the LLC set that the chosen address
maps to.

Decoding the Signal. Given the Manchester-encoded sig-
nal, decoding proceeds in three steps, as shown in Figure 7:
1. Low-frequency noise removal: To eliminate background

noise, such as other processes accessing memory, a mov-
ing average with a large window is subtracted from the
recorded trace. The window is chosen relative to the
sender’s Manchester encoding period (e.g., 1024 times
the encoding period). Since Manchester encoding ensures
equal duration in high and low states, the average will not
be perturbed by the sender’s signal.

2. High-frequency noise removal: To remove fast, transient
noise, a second moving average with a much smaller win-
dow than the sender’s period is applied. This smooths
out short-term fluctuations without affecting the encoded
signal.

3. Bit extraction: We measure the durations of segments
where the signal is positive or negative. Under Manchester
encoding, the signal flips sign either every sender period
or every two sender periods.Accordingly, we keep only
segments whose durations fall within tolerances around
these expected lengths. A segment of approximately one
sender period is decoded as one bit of the sign of smaller
moving average; a segment of approximately two sender
periods is decoded as two bits with the same sign.

Figure 8: Bit error rate for different sizes of pools of sender
and receiver address collections.

4.3 Channel Capacity and Accuracy

Sender’s and Receiver’s Pool Sizes. We first study the
transmission rate and bit error rate as a function of the number
of LLC sets monitored by the receiver and the number of ad-
dresses in the sender’s pool. For this experiment, the receiver
collects approximately 500 samples per sender period. The
results are shown in Figure 8. When the sender and receiver
pools are too small, the monitored LLC sets are unlikely to
contain the level-1 PTEs loaded by the sender, resulting in
a weak signal. Conversely, when the receiver monitors too
many LLC sets, the captured signal becomes too noisy to
reliably detect the additional pressure caused by the sender
transmitting a logical ‘1’. We find that monitoring 16 LLC
sets and using 128 sender addresses yields a transmission rate
of 53 bit/s with a bit error rate of 7%, measured as the average
edit distance between transmitted and received data.

Sender’s Frequency. We next increase the transmission
rate by reducing the number of samples the receiver collects
per sender period to below 500. The optimal sender period
is 5120000 clock cycles, allowing the receiver to collect ap-
proximately 160 samples per period. Under this configuration,
the channel achieves a bit error rate of 3% while transmitting
175 bit/s.

Address Pruning. When the sender additionally prunes its
address pool, the transmission rate can be further increased.
In this configuration, we achieve a transmission rate of 346
bit/s with a bit error rate of 13%, using a pruned address set
of 120 addresses.

Finally, we evaluate an alternative implementation of the
same covert channel by replacing speculative store instruc-
tions with CLFLUSH. Using the optimized configuration with
address pruning, this variant achieves a bit error rate of 9% at
the same transmission rate of 346 bit/s.

11

4.4 Discussion

The exclusive use of speculative stores during the transmis-
sion phase provides several practical advantages for the covert
channel. As speculative stores can yield exceptions without
aborting program execution, the target addresses of these
stores need not reside in present pages. Instead, it suffices
for the corresponding level-2 page table entry (i.e., the PMD
entry) to be present. This significantly simplifies the selection
of suitable virtual addresses within an existing process’s ad-
dress space, as it avoids the need to allocate new mappings
via mmap system calls. More generally, the effectiveness of
the covert channel does not depend on the specific memory
operation used, but rather on the operation initiating virtual
address translations for its targets. Consequently, other mem-
ory operations that trigger address translation, such as loads or
cache flushes, can also be employed to construct the channel.

It is unlikely that a real-world Spectre gadget directly im-
plements the semantics of a sender with address pruning.
However, the existence of gadgets that realize the unpruned
variant of the channel remains an open question. A potential
real-world gadget for transmitting a secret bit stored in a reg-
ister could be structured as follows. Depending on the secret
value, the gadget issues a load, store, or cache flush to an ad-
dress chosen from one of two virtual address regions, denoted
A and B, subject to the following constraints: ① All addresses
in region A have a valid level-2 page table entry (PMD).9 ②
No address in region B has a valid PMD entry. ③ Bits [20:15]
of the virtual address are zero. ④ The gadget can be coerced
into accessing different pages within the selected region. Sys-
tematically identifying such gadgets in real-world binaries
and assessing their exploitability constitutes an interesting
avenue for future work.

Currently, the covert channel transmits its secret through
the shared inclusive LLC cache. As it is primarily the burden
of the receiver to detect the cache activity of the sender, we
speculate that it is possible to extend this covert channel to
non-inclusive caches by using a more advanced cache attack,
following the approaches shown in [28, 33].

5 Evaluating Speculative Load Hardening
against Speculative Stores

One of the widely accepted defenses against Spectre-v1 is
to use compiler-based mitigations such as Speculative Load
Hardening (SLH) to prevent speculative execution of loads.
The idea is to maintain a dedicated flag that reflects the current
speculation state and apply that flag to mask (harden) sensitive
values so they cannot be exposed. Previous work [38] has
explored the efficacy of SLH against Spectre-v1 and propose
a stronger variant of SLH, called Ultimate SLH (USLH).

To reduce the performance overhead, conventional SLH

9A present PTE is not required.

hardens only those load operations that have control-flow de-
pendencies on conditional branches whose outcomes may be
transiently mispredicted. For such loads, SLH propagates a
speculation predicate, derived from the controlling branch,
and uses it to mitigate speculative leakage either by hardening
the load address or by masking the loaded value. Address
hardening ensures that, under mis-speculation, the memory
access is redirected to a benign, non-secret location, while
value hardening masks the loaded value on mis-speculation,
preventing speculative data from propagating through regis-
ters or influencing subsequent computations. By default, SLH
primarily relies on value hardening and does not universally
harden load addresses. In particular, if a secret value is al-
ready resident in a register and is used directly to compute a
speculative memory address, the corresponding load address
may remain unprotected and can still induce secret-dependent
leakage. This behavior can be overridden using the compiler
flag --x86-slh-post-load=false, which enforces address
hardening for all loads, except those that access fixed offsets
of global and local variables. Moreover, as Zhang et al. [38]
note, SLH does not harden speculative stores, which fall out-
side its load-centric threat model.

In this section, we evaluate the efficacy of SLH and USLH
against speculative stores and the PTW-based covert chan-
nel introduced in the previous section. It is important to note
that these mitigations are typically applied to native C/C++
code. Therefore, we first implement our speculative gadgets
(using both RSB and conditional branches) in native C/C++
code. While this is not strictly necessary, it allows us to verify
that our results concerning speculative memory operations
apply equally well to transient windows caused by condi-
tional and indirect branches. We perform three sets of ex-
periments. First, we compile the gadgets using a pre-built
Clang 16 compiler with no SLH flags set. Second, we en-
able all SLH options that employ speculation predicates as in
Table 2. Similarly, we enable all USLH options that rely on
speculation predicates except for hardening variable timing
instructions (cf. Table 2). Note that for SLH, the non-default
flag --x86-slh-post-load=false ensures that even the ad-
dress of the first load after the start of the transient window is
masked and for USLH the flag --x86-slh-store masks the
addresses of speculatively executed stores.

The gadget utilizing RSB prediction follows the similar
structure as shown in Listing 2, with a few modifications.
Specifically, the return stack must be popped twice, as com-
pilers typically push both the return address and the frame
pointer onto the stack (cf. Listing 5 in the Appendix). When
SLH or USLH is enabled, we further observe that the compiler
pushes two additional words onto the stack, which are used
by the callee to track the speculative state. Consequently, the
calling function must pop these additional entries to correctly
realign the stack pointer during the speculative return.

For the conditional branch predictor gadget, we repeat-
edly invoke a function (e.g., gadget_store or gadget_load)

12

SLH --x86-speculative-load-hardening
--x86-slh-post-load=false
--x86-slh-ip
--x86-slh-loads
--x86-slh-indirect

USLH --x86-speculative-load-hardening
--x86-slh-post-load=false
--x86-slh-ip
--x86-slh-loads
--x86-slh-indirect
--x86-slh-sbhAll
--x86-slh-fixed
--x86-slh-store

Table 2: Compiler flags for SLH configurations.

within a loop (cf. Listing 4 in the Appendix). This function
performs a speculative store (load) to target when the con-
trol variable trigger is true. During the final loop iteration,
trigger becomes false, but due to prior branch history, the
conditional branch predictor incorrectly predicts the branch
as taken. As a result, the body of gadget_store is transiently
executed despite the architectural condition being false. The
duration of this transient window can be extended by flushing
the trigger variable prior to the last iteration, delaying its
resolution.

Similar to the conditional branch predictor, the gadget ex-
ploiting indirect branch prediction iterates over an array of
function pointers (cf. Listing 3 in the Appendix). The last
entry of the array is a nop while all other entries point to a
function storing the integer value in the target. When iterating
through this array, the indirect branch predictor learns the
recurring call pattern and speculatively predicts that the last
indirect call will also target the store function.

Compiling these speculative gadget variants and measur-
ing the latency of subsequent memory operation (speculative)
to the target reveals whether the hardening mechanisms can
prevent the speculative execution of the store and load. The
results are shown in Figure 9. As expected, SLH prevents the
speculative execution of all loads, while speculative stores
may still be cached. In contrast, USLH prevents both spec-
ulative loads and stores from being reflected in the cache.
This behavior is consistent with the respective threat models
and security guarantees of SLH and USLH. As the current
investigation is conducted entirely in user-space, it is not pos-
sible for us to directly test whether a PTW is started on the
virtual address of the memory operation. In accordance with
our investigation in Section 3 it is likely that a PTW will be
initiated for the target address. However, this PTW will abort
and thus does not leak any information about the actual target
address. We further observe that with indirect branch based
misprediction neither SLH or USLH stops the load and store
from being cached. This is consistent with their threat model
not targeting indirect branches as other countermeasures (e.g.,
retpolines) already exist.

NONE
0

50
100
150
200
250
300
350
400
450

Ti
m

e

SLH USLH

Load (Conditional BP)
Load (Indirect BP)
Load (RSP)

Store (Conditional BP)
Store (Indirect BP)
Store (RSP)

Figure 9: (Ultimate) Speculative Load Hardening applied
to gadgets using conditional branches and RSB prediction
implemented in native C/C++. The gray rectangle indicates
the timing values for which the target are cached.

6 Conclusion

Spectre attacks and their defenses have predominantly fo-
cused on speculative loads, leaving the impact of specula-
tive stores and their associated address-translation behavior
across different microarchitectures largely unexplored. In this
work, we show that speculative memory operations, such as
stores and flushes, either update the data cache, similar to
load instructions, or initiate page table walks that leave dis-
cernible microarchitectural footprint. In particular, we observe
that speculative store instructions typically initiate page table
walks on all examined Intel and AMD processors. However,
the extent of the page table walk varies significantly across
microarchitectures. In addition, we investigate the impact
of different fence instructions, page table attributes and co-
herency states of target data on the address translation process
and caching behavior of the speculative memory operations.

Based on these observations, we develop a covert channel
that leverages the extent of the page table walk to encode in-
formation, without relying on store-induced cache fills. Given
that the CPUs typically initiate page walks, this channel is
generic and works across all processor generations. We further
show that popular countermeasures, such as Speculative Load
Hardening (SLH), do not protect against speculative store-
based leakage, whereas stronger variants such as Ultimate
SLH (USLH), can mitigate this leakage.

Acknowledgments

This work has been supported by an ARC Discovery Project
number DP210102670 and by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy - EXC 2092 CASA - 390781972
and through project number 560392681.

13

References

[1] Ayush Agarwal, Sioli O’Connell, Jason Kim, Shaked
Yehezkel, Daniel Genkin, Eyal Ronen, and Yuval Yarom.
Spook.js: Attacking Chrome strict site isolation via spec-
ulative execution. In IEEE SP, pages 699–715, 2022.

[2] Basavesh Ammanaghatta Shivakumar, Jack Barnes,
Gilles Barthe, Sunjay Cauligi, Chitchanok Chuengsa-
tiansup, Daniel Genkin, Sioli O’Connell, Peter Schwabe,
Rui Qi Sim, and Yuval Yarom. Spectre declassified:
Reading from the right place at the wrong time. In IEEE
SP, pages 1753–1770, 2023.

[3] Mohammad Behnia, Prateek Sahu, Riccardo
Paccagnella, Jiyong Yu, Zirui Neil Zhao, Xiang
Zou, Thomas Unterluggauer, Josep Torrellas, Carlos V.
Rozas, Adam Morrison, Frank McKeen, Fangfei Liu,
Ron Gabor, Christopher W. Fletcher, Abhishek Basak,
and Alaa R. Alameldeen. Speculative interference
attacks: breaking invisible speculation schemes. In
ASPLOS, pages 1046–1060, 2021.

[4] Atri Bhattacharyya, Alexandra Sandulescu, Matthias
Neugschwandtner, Alessandro Sorniotti, Babak Falsafi,
Mathias Payer, and Anil Kurmus. SMoTherSpectre: Ex-
ploiting speculative execution through port contention.
In CCS, pages 785–800, 2019.

[5] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza,
Frank Piessens, and Raoul Strackx. Telling your
secrets without page faults: Stealthy page table-
based attacks on enclaved execution. In USENIX
Security, pages 1041–1056, 2017. URL https://
www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/van-bulck.

[6] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel
Gruss, Moritz Lipp, Marina Minkin, Daniel Moghimi,
Frank Piessens, Michael Schwarz, Berk Sunar, Jo Van
Bulck, and Yuval Yarom. Fallout: Leaking data on
Meltdown-resistant CPUs. In CCS, pages 769–784,
2019.

[7] Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin Von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, and Daniel Gruss. A sys-
tematic evaluation of transient execution attacks and
defenses. In USENIX Security, pages 249–266, 2019.

[8] Chandler Carruth. Speculative load hardening: A Spec-
tre variant #1 mitigation technique. LLVM Documen-
tation, November 2025. URL https://llvm.org/
docs/SpeculativeLoadHardening.html. Last up-
dated 2025-11-05.

[9] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian
Zhang, Zhiqiang Lin, and Ten-Hwang Lai. SgxPectre:
Stealing Intel secrets from SGX enclaves via speculative
execution. In EuroS&P, pages 142–157, 2019.

[10] Md Hafizul Islam Chowdhuryy and Fan Yao. Leaking
secrets through modern branch predictors in the specu-
lative world. IEEE Trans. Computers, 71(9):2059–2072,
2022.

[11] J Kartheek Devineni and Harpreet S Dhillon. Manch-
ester encoding for non-coherent detection of ambient
backscatter in time-selective fading. IEEE Transactions
on Vehicular Technology, 70(5):5109–5114, 2021.

[12] Jacob Fustos, Michael Garrett Bechtel, and Heechul Yun.
SpectreRewind: Leaking secrets to past instructions. In
ASHES@CCS, pages 117–126, 2020.

[13] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert
Bos, and Cristiano Giuffrida. ASLR on the line:
Practical cache attacks on the MMU. In NDSS,
2017. URL https://www.ndss-symposium.
org/ndss2017/ndss-2017-programme/
aslrcache-practical-cache-attacks-mmu/.

[14] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Translation leak-aside buffer: defeating cache
side-channel protections with TLB attacks. In USENIX
Security, page 955–972, 2018.

[15] Jason Kim, Stephan van Schaik, Daniel Genkin, and
Yuval Yarom. iLeakage: Browser-based timerless spec-
ulative execution attacks on Apple devices. In CCS,
pages 2038–2052, 2023.

[16] Vladimir Kiriansky and Carl Waldspurger. Speculative
buffer overflows: Attacks and defenses. arXiv preprint
arXiv:1807.03757, 2018.

[17] Ofek Kirzner and Adam Morrison. An analysis of spec-
ulative type confusion vulnerabilities in the wild. In
USENIX Security, pages 2399–2416, 2021.

[18] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. In IEEE SP, pages 1–19, 2019.

[19] Esmaeil Mohammadian Koruyeh, Khaled N. Kha-
sawneh, Chengyu Song, and Nael Abu-Ghazaleh.
Spectre returns! speculation attacks using the re-
turn stack buffer. In WOOT, August 2018. URL
https://www.usenix.org/conference/woot18/
presentation/koruyeh.

14

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/aslrcache-practical-cache-attacks-mmu/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/aslrcache-practical-cache-attacks-mmu/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/aslrcache-practical-cache-attacks-mmu/
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://www.usenix.org/conference/woot18/presentation/koruyeh

[20] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In USENIX Security, 2018.

[21] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B. Lee. Last-level cache side-channel attacks are
practical. In IEEE SP, pages 605–622, 2015.

[22] Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai,
Ofir Weisse, Satish Narayanasamy, and Baris Kasikci.
DOLMA: Securing speculation with the principle of
transient non-observability. In USENIX Security, pages
1397–1414, 2021.

[23] Giorgi Maisuradze and Christian Rossow. ret2spec:
Speculative execution using return stack buffers. In
CCS, pages 2109–2122, 2018.

[24] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L.
Titzer, and Toon Verwaest. Spectre is here to stay:
An analysis of side-channels and speculative execution.
arXiv preprint arXiv:1902.05178, 2019.

[25] Oleksii Oleksenko, Christof Fetzer, Boris Köpf, and
Mark Silberstein. Revizor: Testing black-box CPUs
against speculation contracts. In ASPLOS, pages 226–
239, 2022.

[26] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: the case of AES. In CT-
RSA, pages 1–20, 2006.

[27] Marco Patrignani and Marco Guarnieri. Exorcising
Spectres with secure compilers. In CCS, pages 445–461,
2021.

[28] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede.
Prime+Scope: Overcoming the observer effect for high-
precision cache contention attacks. In CCS, pages 2906–
2920, 2021.

[29] Caroline Trippel, Daniel Lustig, and Margaret
Martonosi. MeltdownPrime and SpectrePrime:
Automatically-synthesized attacks exploiting
invalidation-based coherence protocols. arXiv
preprint arXiv:1802.03802, 2018.

[30] Alan Wang, Boru Chen, Yingchen Wang, Christopher
Fletcher, Daniel Genkin, David Kohlbrenner, and Ric-
cardo Paccagnella. Peek-a-walk: Leaking secrets via
page walk side channels. In IEEE SP, pages 23–23, May
2025. doi: 10.1109/SP61157.2025.00023.

[31] Johannes Wikner and Kaveh Razavi. RETBLEED: Arbi-
trary speculative code execution with return instructions.
In USENIX Security, pages 3825–3842, 2022.

[32] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam
Morrison, Christopher Fletcher, and Josep Torrellas. In-
visiSpec: Making speculative execution invisible in the
cache hierarchy. In MICRO, pages 428–441, 2018.

[33] Mengjia Yan, Read Sprabery, Bhargava Gopireddy,
Christopher Fletcher, Roy Campbell, and Josep Torrel-
las. Attack directories, not caches: Side channel attacks
in a non-inclusive world. In IEEE SP, pages 888–904,
2019.

[34] Yuval Yarom and Katrina Falkner. Flush+Reload: A
high resolution, low noise, L3 cache side-channel attack.
In USENIX Security, pages 719–732, 2014.

[35] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morri-
son, Josep Torrellas, and Christopher W. Fletcher. Spec-
ulative taint tracking (STT) a comprehensive protection
for speculatively accessed data. In MICRO, pages 954–
968, 2019.

[36] Ruiyi Zhang, Taehyun Kim, Daniel Weber, and Michael
Schwarz. (M)WAIT for it: Bridging the gap be-
tween microarchitectural and architectural side chan-
nels. In USENIX Security, pages 7267–7284,
2023. URL https://www.usenix.org/conference/
usenixsecurity23/presentation/zhang-ruiyi.

[37] Tao Zhang, Kenneth Koltermann, and Dmitry Ev-
tyushkin. Exploring branch predictors for constructing
transient execution Trojans. In ASPLOS, pages 667–682,
2020.

[38] Zhiyuan Zhang, Gilles Barthe, Chitchanok Chuengsa-
tiansup, Peter Schwabe, and Yuval Yarom. Ultimate
SLH: Taking speculative load hardening to the next
level. In USENIX Security, pages 7125–7142, 2023.

[39] Zirui Neil Zhao, Adam Morrison, Christopher W
Fletcher, and Josep Torrellas. Binoculars: Contention-
based side-channel attacks exploiting the page walker.
In USENIX Security, pages 699–716, 2022.

15

https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-ruiyi
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-ruiyi

A Appendix

Microarchitecture Processor Generation Processor

Sandy Bridge Sandy Bridge i5-2400

Skylake
Skylake i5-6260U
Coffee Lake i7-8700
Comet Lake i7-10710U

Cypress Cove Rocket Lake i7-11700KF
Golden Cove Alder Lake (P-Core) i7-1260P
Gracemont Alder Lake (E-Core) i7-1260P
Zen Summit Ridge Ryzen Threadripper 1900X
Zen 3 Vermeer Ryzen 7 5950X

Table 3: Tested processors and their microarchitectures.

1 int ret = 0; // Used to prevent the compiler from
optimizing out certain loads↪→

2 uint64_t run() {
3 *****trigger = NUMBER_OF_TRAINING_RUNS - 1;
4

5 // Prepare the array jump_functions.
6 for (int i = 0; i < NUMBER_OF_TRAINING_RUNS; ++i)
7 jump_functions[i] = store_5_in_target;
8 jump_functions[0] = nop;
9

10 for (;;) {
11 asm volatile(
12 "cpuid\n\t"
13 // Flush linked list and target
14 "cpuid\n\t"
15 : : [target] "r"(target), [trigger] "r"(trigger)
16 : "rax", "rbx", "rcx", "rdx");
17

18 // When trigger == 0, this will speculatively
store_5_in_target instead of the nop.↪→

19 ret += jump_functions[*****trigger]();
20 // As this happens after the mis-speculated branch,

the conditional branch predictor cannot detect
the change of trigger via the branch history
buffer.

↪→

↪→

↪→

21 if (!(*****trigger))
22 break;
23 --*****trigger;
24 }
25 }

Listing 3: Speculative Gadget using Indirect Branch Predic-
tion.

1

2 int gadget_load(uint64_t *target, uint64_t *trigger) {
3 int ret = 0;
4 if (*trigger) ret = *target;
5 return ret;
6 }
7 void gadget_store(uint64_t *target, uint64_t *trigger) {
8 if (*trigger)
9 *target = 5; // This is the speculative store

10 }
11

12 *trigger = NUMBER_OF_TRAINING_RUNS; // Quite a bit of
training is necessary to ensure that the branch
predictors don't "learn" from multiple runs.

↪→

↪→

13 for (;;) {
14 asm volatile(
15 "cpuid\n\t"
16 "clflush (%[trigger])\n\t" // Flush for larger

transient window↪→

17 "clflush (%[target])\n\t" // Flush to see the effect
of a speculative store↪→

18 "cpuid\n\t" // Barrier to ensure that the flushes
complete↪→

19 :
20 : [target] "r"(target), [trigger] "r"(trigger)
21 : "rax", "rbx", "rcx", "rdx");
22 if constexpr (access_type == AccessType::STORE)
23 gadget_store(target, trigger);
24 else
25 ret += gadget_load(target, trigger);
26 // As this happens after the mis-speculative branch,

the conditional branch predictor cannot detect the
change of trigger via the branch history buffer.

↪→

↪→

27 if (!(*trigger))
28 break;
29 --*trigger;
30 }

Listing 4: Speculative Gadget using Conditional Branch Pre-
diction.

1 void mispredict_return(void) {
2 asm volatile(
3 "pop %%rdi\n\t" // Pop entry into mispredict_return

(caused by call)↪→

4 "pop %%rdi\n\t" // Pop entry of frame pointer rbp that
was pushed when entering transient_store↪→

5 "clflush (%%rsp)\n\t" // Force speculation
6 #if (defined SLH) || (defined USLH)
7 "add $0x10, %%rsp\n\t" // SLH requires more space on

the return stack↪→

8 #endif
9 "lfence\n\t"

10 :
11 :
12 : "cc", "rdi");
13 }
14 void transient_store() {
15 mispredict_return();
16

17 // This should only ever execute transiently
18 *target = 5;
19 }

Listing 5: Speculative Gadget using Return Stack Prediction.

16

Speculative Loads

Processor Flush RSP Invalidate TLB Flush to PTE1 Flush to PTE2 Flush to PTE3 Flush to PTE4

T PTE1 PTE2 PTE3 PTE4 T PTE1 PTE2 PTE3 PTE4 T PTE1 PTE2 PTE3 PTE4 T PTE1 PTE2 PTE3 PTE4 T PTE1 PTE2 PTE3 PTE4 T PTE1 PTE2 PTE3 PTE4

Sandy Bridge 0% 0% 5% 0% 100% 0% 0% 2% 2% 100% 0% 2% 2% 98% 100% 0% 0% 1% 100% 100% 3% 0% 3% 100% 100% 0% 0% 32% 100% 100%
Skylake 0% 0% 1% 1% 100% 0% 0% 0% 100% 100% 0% 0% 0% 99% 100% 0% 6% 96% 99% 100% 99% 97% 98% 99% 100% 99% 98% 99% 100% 100%
Coffee Lake 0% 0% 0% 3% 100% 0% 0% 0% 98% 100% 0% 0% 100% 100% 100% 0% 83% 100% 100% 100% 0% 100% 100% 100% 100% 98% 100% 100% 100% 100%
Comet Lake 0% 0% 0% 0% 100% 0% 0% 0% 100% 100% 0% 0% 93% 100% 100% 0% 100% 100% 100% 100% 0% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Rocket Lake 0% 0% 0% 7% 100% 0% 0% 1% 97% 100% 0% 0% 96% 100% 100% 0% 100% 100% 100% 100% 99% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Alder Lake (P-
Core)

0% 1% 3% 6% 100% 0% 1% 3% 9% 100% 3% 3% 14% 94% 100% 4% 6% 92% 94% 100% 24% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Alder Lake (E-
Core)

0% 0%

Summit Ridge 0% 100% 100% 100% 100% 7% 100% 100% 100% 100% 9% 100% 100% 100% 100% 98% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Vermeer 0% 100% 100% 100% 100% 0% 100% 100% 100% 100% 0% 100% 100% 100% 100% 0% 100% 100% 100% 100% 12% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Speculative Stores

Processor Flush RSP Invalidate TLB Flush to PTE1 Flush to PTE2 Flush to PTE3 Flush to PTE4
T PTE1 PTE2 PTE3 PTE4 T PTE1 PTE2 PTE3 PTE4 T PTE1 PTE2 PTE3 PTE4 T PTE1 PTE2 PTE3 PTE4 T PTE1 PTE2 PTE3 PTE4 T PTE1 PTE2 PTE3 PTE4

Sandy Bridge 0% 0% 0% 2% 100% 0% 0% 0% 0% 100% 0% 2% 2% 98% 100% 0% 0% 0% 100% 100% 0% 2% 4% 100% 100% 0% 0% 31% 100% 100%
Skylake 0% 0% 0% 100% 100% 0% 0% 0% 1% 100% 0% 4% 0% 100% 100% 0% 11% 90% 97% 100% 0% 89% 90% 91% 100% 0% 100% 100% 100% 100%
Coffee Lake 0% 0% 0% 98% 100% 0% 0% 0% 3% 100% 0% 0% 15% 100% 100% 0% 82% 100% 100% 100% 0% 100% 100% 100% 100% 0% 100% 100% 100% 100%
Comet Lake 0% 0% 0% 100% 100% 0% 0% 0% 0% 100% 0% 0% 92% 100% 100% 0% 100% 100% 100% 100% 9% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Rocket Lake 0% 0% 1% 98% 100% 0% 0% 6% 100% 100% 0% 0% 96% 100% 100% 1% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Alder Lake (P-
Core)

0% 1% 3% 9% 100% 0% 1% 3% 6% 100% 0% 3% 18% 94% 100% 0% 18% 93% 94% 100% 0% 100% 100% 100% 100% 0% 100% 100% 100% 100%

Alder Lake (E-
Core)

0% 0%

Summit Ridge 7% 100% 100% 100% 100% 0% 100% 100% 100% 100% 9% 100% 100% 100% 100% 98% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Vermeer 0% 100% 100% 100% 100% 0% 100% 100% 100% 100% 0% 100% 100% 100% 100% 0% 100% 100% 100% 100% 5% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Speculative Cache Flushes

Processor Flush RSP Invalidate TLB Flush to PTE1 Flush to PTE2 Flush to PTE3 Flush to PTE4
T PTE1 PTE2 PTE3 PTE4 T PTE1 PTE2 PTE3 PTE4 T PTE1 PTE2 PTE3 PTE4 T PTE1 PTE2 PTE3 PTE4 T PTE1 PTE2 PTE3 PTE4 T PTE1 PTE2 PTE3 PTE4

Sandy Bridge 0% 0% 0% 0% 100% 0% 0% 0% 3% 100% 0% 2% 1% 100% 100% 0% 0% 0% 100% 100% 0% 0% 3% 100% 100% 0% 0% 31% 100% 100%
Skylake 0% 0% 1% 4% 100% 0% 0% 0% 100% 100% 0% 5% 0% 99% 100% 0% 95% 97% 97% 100% 0% 89% 89% 100% 100% 0% 100% 100% 100% 100%
Coffee Lake 0% 0% 0% 1% 100% 0% 0% 0% 98% 100% 0% 0% 100% 100% 100% 0% 83% 100% 100% 100% 0% 100% 100% 100% 100% 0% 100% 100% 100% 100%
Comet Lake 0% 0% 0% 0% 100% 0% 0% 0% 100% 100% 0% 0% 92% 100% 100% 0% 96% 100% 100% 100% 0% 100% 100% 100% 100% 0% 100% 100% 100% 100%
Rocket Lake 0% 0% 0% 7% 100% 0% 0% 4% 99% 100% 0% 0% 100% 100% 100% 0% 100% 100% 100% 100% 0% 100% 100% 100% 100% 0% 100% 100% 100% 100%
Alder Lake (P-
Core)

0% 1% 5% 6% 100% 0% 1% 3% 8% 100% 0% 3% 17% 94% 100% 0% 6% 93% 94% 100% 0% 100% 100% 100% 100% 0% 100% 100% 100% 100%

Alder Lake (E-
Core)

0% 0%

Summit Ridge 0% 100% 100% 100% 100% 0% 100% 100% 100% 100% 0% 100% 100% 100% 100% 0% 100% 100% 100% 100% 0% 100% 100% 100% 100% 0% 100% 100% 100% 100%
Vermeer 0% 100% 100% 100% 100% 0% 100% 100% 100% 100% 0% 100% 100% 100% 100% 0% 100% 100% 100% 100% 0% 100% 100% 100% 100% 0% 100% 100% 100% 100%

Table 4: Testing whether the page table walk can be interrupted. The transient window is increased from left to right. Entries
indicate percentage cached.

Page Permission Bits

Processors Normal Configuration Read-Only Dirty Accessed

Load Store Flush Load Store Flush Load Store Flush Load Store Flush
T PTE1 T PTE1 T PTE1 T PTE1 T PTE1 T PTE1 T PTE1 T PTE1 T PTE1 T PTE1 T PTE1 T PTE1

Sandy Bridge (Sandy Bridge) 100% 100% 0% 100% 0% 100% 100% 100% 0% 100% 0% 100% 100% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100%
Skylake (Skylake) 100% 100% 0% 100% 0% 100% 100% 100% 0% 100% 0% 100% 100% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100%
Coffee Lake (Skylake) 100% 100% 0% 100% 0% 100% 100% 100% 0% 100% 0% 100% 100% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100%
Comet Lake (Skylake) 100% 100% 100% 100% 0% 100% 100% 100% 0% 100% 0% 100% 100% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100%
Rocket Lake (Cypress Cove) 100% 100% 100% 100% 0% 100% 100% 100% 0% 100% 0% 100% 100% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100%
Alder Lake (P-Core) (Golden Cove) 100% 100% 0% 100% 0% 100% 100% 100% 0% 100% 0% 100% 100% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100%
Alder Lake (E-Core) (Gracemont) 0%
Summit Ridge (Zen) 100% 100% 100% 100% 0% 100% 100% 100% 0% 100% 0% 100% 100% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100%
Vermeer (Zen 3) 100% 100% 100% 100% 0% 100% 100% 100% 0% 100% 0% 100% 100% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100%

Table 5: Different configurations of page flags for speculative stores. Note that the PTE1 loads for the not-accessed page tests are
pathological: They stem from setting critical flags.

Processors No Fence SFENCE MFENCE LFENCE

Load Store Flush Load Store Flush Load Store Flush Load Store Flush
T PTE1 T PTE1 T PTE1 T PTE1 T PTE1 T PTE1 T PTE1 T PTE1 T PTE1 T PTE1 T PTE1 T PTE1

Sandy Bridge (Sandy Bridge) 100% 100% 0% 100% 0% 100% 100% 100% 0% 100% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Skylake (Skylake) 100% 100% 0% 100% 0% 100% 100% 100% 0% 100% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Coffee Lake (Skylake) 100% 100% 0% 100% 0% 100% 100% 100% 0% 100% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Comet Lake (Skylake) 100% 100% 100% 100% 0% 100% 100% 100% 100% 100% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Rocket Lake (Cypress Cove) 100% 100% 100% 100% 0% 100% 100% 100% 100% 100% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Alder Lake (P-Core) (Golden Cove) 100% 100% 0% 100% 0% 100% 100% 100% 0% 100% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Alder Lake (E-Core) (Gracemont) 0%
Summit Ridge (Zen) 100% 100% 100% 100% 0% 100% 100% 100% 100% 100% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Vermeer (Zen 3) 100% 100% 100% 100% 0% 100% 100% 100% 100% 100% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 6: Transient execution of a memory fence followed by a memory instructions. Entries indicate percentage cached.

17

	Introduction
	Background
	Speculative and Out-of-Order Execution
	Spectre Attacks
	Address Translation in x86 Processors

	Analysis of Speculative Store Operations
	Speculation Gadget Design
	Kernel Module for Page Table Control
	Experimental Setup and Evaluation
	Page Table Walk of Speculative Memory Instructions
	Effect of Fencing on Address Translation
	Effect of Different Page Attributes
	Effect of Coherency Protocol States

	Covert Channel
	Sender
	Receiver
	Channel Capacity and Accuracy
	Discussion

	Evaluating Speculative Load Hardening against Speculative Stores
	Conclusion
	Appendix

