No Security Without Time Protection:
We Need a New Hardware-Software Contract

Qian Ge
Data61, CSIRO
UNSW Sydney

gian.ge@data61.csiro.au

ABSTRACT

The recent Spectre exploits demonstrated that covert timing
channels are a mainstream security threat. Their prevention
requires that operating systems provide time protection, in
addition to the established memory protection. We propose
OS mechanisms and designs which provide time protection,
and define requirements on the hardware to enable them.
We demonstrate that present mainstream processors do not
meet these requirements, making them inherently insecure.
We argue the need for a new security-oriented hardware-
software contract, which we call the alSA as it augments the
ISA, in order to enable time protection.

ACM Reference Format:

Qian Ge, Yuval Yarom, and Gernot Heiser. 2018. No Security With-
out Time Protection:, We Need a New Hardware-Software Contract.
In 9th Asia-Pacific Workshop on Systems (APSys ’18), August 27—
28, 2018, Jeju Island, Republic of Korea. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3265723.3265724

1 INTRODUCTION

Modern processors contain microarchitectural components,
such as caches and branch predictors, that exploit temporal
or spatial locality for improving average-case performance.
Inherently, these components maintain state that depends
on recent execution history and affects the performance of
subsequent execution. The execution of a previous process
can thus affect the timing of the execution of the current.
Timing variations can be exploited as covert chan-
nels [Lampson 1973] that bypass the security policy of the
system. In a typical scenario a Trojan program induces tim-
ing variations that encode information, and a spy program
observes these variations to decode the communicated infor-
mation. Various microarchitectural components have been
used to implement covert channels, including stateless hard-
ware of limited bandwidth, such as busses [Ge et al. 2018].

APSys ’18, August 27-28, 2018, Jeju Island, Republic of Korea

© 2018 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in 9th Asia-Pacific Workshop on Systems (APSys ’18), August 27-28, 2018, Jeju
Island, Republic of Korea, https://doi.org/10.1145/3265723.3265724.

Yuval Yarom
Data61, CSIRO
University of Adelaide
yval@cs.adelaide.edu.au

Gernot Heiser
Data61, CSIRO
UNSW Sydney

gernot@unsw.edu.au

Compared to side channels, where the sender transmits
the information inadvertently, covert channels depend on
insider help and are traditionally considered a less signifi-
cant security threat. However, in the recent disclosure of the
Spectre attack [Kocher et al. 2019], an attacker uses a covert
communication channel from a speculatively executed gad-
get acting as a Trojan. Spectre shows that covert channels pose
a real security risk to mainstream computing. Furthermore,
any covert-channel mechanism bears the risk of being ex-
ploitable as a side channel by an ingenious attacker. Hence,
proactive security requires prevention of covert channels.

Preventing unauthorised information flow is a primary
duty of the operating system (OS). Traditionally, OSes pro-
vide memory protection, which prevents unauthorised spatial
interference between programs. However, present-day OSes
notoriously lack time protection, i.e. preventing unauthorised
temporal interference. In other words, they have no means
for preventing timing channels.

The OS could prevent timing channels exploiting a mi-
croarchitectural feature if the OS could ensure that it is

e never shared between security domains, i.e. the feature
is strictly partitioned, or

e where a feature is time-multiplexed between domains,
it is reset to a defined state on a domain switch.

In general, on-core state cannot be partitioned on present
hardware and must be reset, which raises the question of
whether architectures provide appropriate mechanisms to
do so. To find out, we examine multiple generations of x86
and Arm processors, with the disappointing result that each
processor studied contains microarchitectural state that can be
exploited as a timing channel, but cannot be reset by architected
mechanisms (Section 4). In other words, we find that the OS
is powerless to prevent timing channels.

This leads to the paradoxical situation that manufactur-
ers can claim that their hardware operates as specified [In-
tel 2018a], yet an OS relying on this specification, the
instruction-set architecture (ISA), cannot prevent leakage,
meaning that the hardware is inherently insecure. The in-
evitable conclusion is that for security, the ISA is an insuffi-
cient specification of the hardware-software contract.

https://doi.org/10.1145/3265723.3265724
https://doi.org/10.1145/3265723.3265724

APSys 18, August 27-28, 2018, Jeju Island, Republic of Korea

We propose to remedy this situation by an improved con-
tract, which we call the augmented ISA, aISA for short. We
introduce the alSA and outline the kind of information it
must specify for enabling security (Section 5).

2 BACKGROUND

The existence of a microarchitectural timing channel is of-
ten characterised as a flaw in the hardware. However, these
channels are a necessary byproduct of measures taken by
architects to maximize average-case performance, typically
by exploiting the well-established principle of temporal and
spatial locality. The inevitable implication is that execution
speed depends on such microarchitectural state, and thus
on the execution history. This history dependence is a fun-
damental reason for the existence of timing channels, and
cannot be completely avoided without dramatically reducing
performance. Hence the solution cannot be to completely
remove any potential timing channel from the hardware,
but to prevent their use for unauthorised information flow
across security domains. In other words, the OS must provide
time protection between processes. It must do so without
significantly impacting overall system performance.

Time protection, like the more established memory protec-
tion, implies mandatory enforcement by the OS, rather than
depending on application cooperation. As the use of gadgets
in the Spectre attacks has demonstrated, even “trusted” code
may be tricked into leaking. Like its memory counterpart,
time protection is a black-box form of isolation.

This implies that approaches which provide some amount
of “secure” memory, such as Sentry [Colp et al. 2015] or
CATalyst [Liu et al. 2016], are not sufficient.

Partitioning is required where hardware resources are
shared between cores, such as the last-level cache (LLC).
Such sharing is truly concurrent, and on some resources
(interconnects) contention is for bandwidth rather than state,
so resetting between accesses is not an option.

Mandatory partitioning of off-core caches (L2-LLC) is
possible by page colouring [Kessler and Hill 1992; Liedtke
et al. 1997]. These caches are physically addressed, and large
enough that the associative lookup forces a particular ad-
dress into a certain subset of the cache. The OS controls
physical memory allocation, and can thus prevent domains
from competing for the same cache lines by allocating them
physical frames of different cache colours. Partitoning state-
less features (busses) is not supported on present hardware.

Resetting is needed for stateful on-core resources, such as
the L1 caches, the TLB, the branch predictor and L1 prefetch-
ers, which are virtually addressed. As virtual addresses are
under application, rather than OS control, the OS cannot
partition such resources without explicit hardware support.

Qian Ge, Yuval Yarom, and Gernot Heiser

Table 1: Evaluation hardware. Mode refers to our plat-
form configuration, all support 32- and 64-bit mode.

Architecture x86 x86 x86 Arm
Microarch. Sandy Bridge Haswell Skylake Hikey
Processor i7-2600 E3-1220 v3 i7-6700 Kirin 620
Vintage 2011 2013 2015 2015
Clock rate 3.4GHz 3.1GHz 3.4GHz 1.2 GHz
Mode 32-bit 64-bit 64-bit 32-bit
L1-D cache 32KiB 32KiB 32KiB 32KiB
setsxassoc. 64%8 64%8 64%8 128x4
L1-I cache 32KiB 32KiB 32KiB 32KiB
setsxassoc. 64%8 64%8 64%8 256X2
I+D-TLB 128+64 128+64 128+64 10+10
Unified TLB 512 1024 1536 512
BTB 7?? ?27?7? 7?7? 256

While such support has been proposed in the past [Dom-
nister et al. 2012; Wang and Lee 2007], it is not available on
commodity processors. Hence, such resources must be reset
on each domain switch.

Note that hyperthreading leads to concurrent access of
on-core resources. Hence, in the absence of specific hard-
ware support, no time protection is possible between hyper-
threads [Ge et al. 2018], and therefore hyperthreads should
always be allocated to the same security domain.

3 RESETTING STATE

For the remainder of this paper we focus on channels en-
abled by on-core state, which, as explained earlier, cannot
be partitioned without further hardware support. We exam-
ine whether such channels can be eliminated by resetting
microarchitectural state.

We study multiple processors from the presently dominant
ISAs, x86 and Arm; the main characteristics of the proces-
sors are shown in Table 1. In this section we investigate
what support these processors provide for resetting on-core
microarchitectural state.

3.1 x86

The x86 architecture has very limited support for resetting
microarchitectural state, and no way of resetting only on-
core state. It provides the wbinvd instruction, which flushes
the complete cache hierarchy [Intel Corporation 2016]. In
terms of time protection, this is overkill, since the physically-
indexed off-core caches should be partitioned rather than
reset, as explained in the previous section. The cost of flush-
ing the whole cache hierarchy is too high to make a full
cache flush on each security-partition switch practical; we
measure a worst-case cost of this flush of 12 ms on an Intel
Sandy Bridge system (including the indirect cost of subse-
quent misses). Nevertheless, it is the only hammer the ISA
gives us, so we use it for now.

Time Protection: We Need a New Hardware-Software ContractAPSys *18, August 27-28, 2018, Jeju Island, Republic of Korea

There are multiple mechanisms for TLB flushing: We use
invpcid in 64-bit mode and reload CR3 and CR@ (for invali-
dating both non-global and global mappings) in 32-bit mode.

x86 has no instructions for flushing other on-core state,
although this could happen as an (undocumented) side
effect of flushing caches or the TLB. The architecture
does support disabling the data prefetcher by updating
MSR @x1A4 [Viswanathan 2014], which we use to be on the
safe side, understanding well that this will degrade perfor-
mance. There is no way to control the instruction prefetcher.

Following disclosure of the Spectre attack, Intel provided
a microcode patch that introduced three mechanisms collec-
tively called indirect branch control (IBC) [Intel 2018d]. IBC
does not claim to clear branch predictor state, but provides
a degree of isolation between processes. The initial patch
was soon withdrawn due to causing issues with booting ma-
chines [Intel 2018c], then updated three months later [Intel
2018b]. As it is a possible mechanism for providing time
protection we evaluate it separately.

3.2 Arm

Arm supports a selective flush of the L1 caches, without af-
fecting lower levels in the cache hierarchy; we use the DCCISW
and ICIALLU instructions. We use the TLBIALL instruction
to flush the TLB and BPIALL for the branch predictor.

There are platform-dependent mechanisms for disabling
the data prefetcher, the CPU auxiliary control register in
case of our Hikey platform. As on x86, there is no way to
disable the instruction prefetcher.

4 MEASURING RESET EFFICACY
4.1 Implementing timing channels

We implement channels targeting several microarchitectural
features. Here we only report on the interesting cases, i.e. the
channels that cannot be closed making full use of any reset
mechanisms provided by the architecture. Specifically, we
look at channels exploiting the L1 I-cache, and two compo-
nents of the branch predictor: the branch target buffer (BTB)
and the branch history buffer (BHB). Complete results are
presented on our web site [Data61, CSIRO 2018].

Our attacks are based on the Prime+Probe technique [Os-
vik et al. 2006; Percival 2005] to implement communication
between Trojan and spy. Whereas past implementations fo-
cus on mechanisms and channel capacity [Evtyushkin and
Ponomarev 2016; Gruss et al. 2016; Liu et al. 2015; Maurice
et al. 2017], our focus is on establishing the existence of
channels and whether they can be closed.

In Prime+Probe, the spy primes the cache by filling cache
sets with its own data, then waits for the Trojan to replace
some of the cache lines based on the input symbol it trans-
mits. Lastly, the spy probes the cache sets by measuring the

access time to the previously cached data, thus measuring
the Trojan’s cache footprint. The output symbol is the total
probing time of the spy.

L1 D-cache. The spy fills the whole cache with its own data,
waits for a context switch (to the Trojan), and then measures
the time it takes to access the cache. To send symbol s, the
Trojan reads enough data to fill all of the ways of cache sets
0,1,...,s— 1.

L1 I-cache. To send symbol, s, the Trojan executes a series
of jumps in memory locations that map to specific cache
sets [Aciigmez 2007; Aclicmez et al. 2010]. We use the imple-
mentation provided by the Mastik toolkit [Yarom 2016].

BTB. Our implementation of a BTB-based channel uses n
chained branch instructions as a probing buffer. The Trojan
probes on the first s, while the spy measures time taken for
probing the entire buffer. On the Arm, n is the size of the
BTB (Table 1). On x86 platforms, the BTB is not documented,
but can frequently be reverse-engineered [Milenkovic et al.
2004] and found to have 4096 entries on Ivy Bridge [Godbolt
2016]. We let the Trojan execute from 3072 to 5120 jmps,
whereas the spy executes 4096. We align the jmps to 16 bytes
to force the buffers to exceed the L1-I cache capacity.

BHB. We implement the residual state-based covert chan-
nel [Evtyushkin et al. 2016]. The Trojan and spy use the
same channel code for sending and receiving, transmitting
a single bit per iteration. The attack includes a sequence of
conditional branches that are always taken, to set the history
to a known state. This is followed by a branch that condition-
ally skips over 256 nop instructions. The Trojan encodes a
single bit by training the prediction for the last branch. The
spy measures the cost of executing the nop instructions, a
mis-predict increases latency.

i
2 12000 04
S 11000 8035
o 10000 8:855
E 9000 }
oo Gors
5 7000 0.005
[0

a 0 10 20 30 40 50 60

Cache sets accessed

Figure 1: Channel matrix for the unmitigated L1 I-
cache channel on the Sandy Bridge platform.

4.2 Visualising channels

We use the channel matrix for visualising channels [Cock
et al. 2014]. It gives the conditional probability of observing
a certain output symbol (spy probing time, y axis) given an
input symbol (cache lines accessed by the Trojan, x axis)

APSys 18, August 27-28, 2018, Jeju Island, Republic of Korea

& 0.01
o
[]
3
< 0.001
£
=
@ 0.01
<
[S]
>
)
Q
£ 0.001
=
@
<
[S]
B 0.00100
@
£
=
0.00010

0 5 10 15 20 25 30 35 40
Cache sets

Figure 2: Channel matrix for the mitigated L1 I-cache
channels on (top to bottom) Sandy Bridge, Haswell
and Hikey.

and is represented as a heat map, where a brighter colour
represents a higher probability. With no channel, outputs
are independent of inputs and the graph will show no hori-
zontal variation, any horizontal variation can be exploited
as a channel. For example, in Figure 1, the spy measures a
probing time (output) that is highly correlated with the cache
footprint of the Trojan, a clear dependency.

4.3 Results

We measure the channel matrix without mitigations, as well
as with all reset operations applied (and the data prefetcher

34000

33000 0.01

32000 |

Time (cycles)

0.001
31000
3500 4000 4500 5000

37000
36500
36000
35500
35000
34500

0.01

0.001

Time (cycles)

3100 3150 3200 3250 3300 3350 3400 3450 3500
Jumps

Figure 3: Channel matrix for the mitigated BTB chan-
nels on Haswell (top) and Skylake.

Qian Ge, Yuval Yarom, and Gernot Heiser

disabled). While this effectively removes the D-cache chan-
nel on all platforms, this is not the case for the I-cache, as
shown in Figure 2. The channel is most pronounced on the
(somewhat dated) Sandy Bridge processor, where there is
a definite horizontal variation, although nowhere near as
pronounced as in the unmitigated case of Figure 1.

On the Haswell, the channel is much less pronounced,
only input value zero is special, resulting in a small channel.
Similarly, the Hikey shows a small but visible channel, evi-
dent at inputs 0-2 and the slightly rising slope of the peak
of the channel heatmap.

We have a similar story for the branch-target buffer. A
clear channel seems to be closed by applying the flush op-
eration on the Sandy Bridge, while on the Haswell there
is a very clear residual channel, indicated by the curiously
shaped pattern in Figure 3. On the Skylake there is a drop
in the heatmap at input values around 3250 in a graph that
has otherwise little horizontal variation, but this is enough
to establish a channel.

300

@
B 0.100000
g 0 0.010000
bt 200 0.001000
S 150 0.000100
3 100 0.000010
3 0.100000
s 0.010000
bt 0.001000
2 0.000100
3 0.000010
7
° 0.1
o
5 0.01
3 0.001
g 240 01
g 220
T 200 0.01
a 180
>
3 160 0.001

0 1

Input (sets)

Figure 4: Channel matrix for the mitigated BHB chan-
nels on (top to bottom) Sandy Bridge, Haswell, Sky-
lake and Hikey.

The branch-history buffer is a single-bit channel (branch
taken or not taken). As per Figure 4, flushing is ineffective
on all four platforms, the probe time clearly distinguishes
between the two input values.

Time Protection: We Need a New Hardware-Software ContractAPSys *18, August 27-28, 2018, Jeju Island, Republic of Korea

We have now seen that on all our platforms there is at
least one channel that cannot be removed by architected reset
operations, on several platforms there are multiple channels.

34000
3 33500 0.01
S 33000
o 32500 0.001
E 32000

31500
g
_% 0.1
2
[0.01

Cache sets

Figure 5: Channel matrix for adding Intel’s original
Spectre mitigation to the Haswell L1-I channel (top)
and Skylake BHB channel (bottom).

To explore the scope for improved architected reset mech-
anisms, we apply Intel’s originally (later withdrawn) IBC
operation (see Section 3.1) on top of the other resets. We find
that this is partially effective. Besides only supporting the
newer Haswell and Skylake platform, it seems to remove
most of the residual channels we observed. However, it fails
to close the L1-I cache channel on the Haswell! (top graph
in Figure 5), which shows a slight discontinuity at eight
cache sets. Furthermore, it leaves a clear BHB channel on
the Skylake (bottom graph in Figure 5).

In contrast, with the most recent microcode update [Intel
2018b], IBC is effective in removing all our residual channels
(even without disabling the prefetcher, but still requiring the
prohibitively expensive full cache flush).

These results show that it is clearly possible to improve
the present situation, manufacturers are able to provide more
effective reset operations, but it also shows that they really
need to reset all microarchitectural state.

5 THE AUGMENTED ISA: A NEW
HARDWARE-SOFTWARE CONTRACT

The purpose of the hardware-software contract is to allow
independent development of hardware and software, with
the expectation that everything works correctly as long as
everyone observes the contract. Clearly, the ISA is not the
right contract, as it abstracts away information that is essen-
tial for ensuring time protection as a prerequisite for security.
In other words, we need a new hardware-software contract.
The new contract must satisfy several requirements:

!The microcode is for a desktop version of Haswell with the same unmiti-
gated channel, so the result should be representative.

(1) It must provide the OS with sufficient mechanisms for
supporting time protection

(2) it must be as simple as possible

(3) it must not reveal more architectural details than ab-
solutely necessary

(4) it must minimise restrictions imposed on architects.

The points 2-4 can be viewed as different aspects of the same
principle, and are important in practice. Simplicity helps
software as well as hardware developers. Manufacturers will
resist revealing critical IP, and require the freedom to inno-
vate at the microarchitecture level. Together these points
argue for a minimal augmentation, rather than wholesale
replacement of the ISA. We therefore call the new contract
the augmented ISA (alSA).

In order to minimise restrictions on architects, we accept
that the aISA will be less stable than the ISA, and may change
between processor versions. This is acceptable for software
developers, as the difference between the ISA and the alSA
only affects small amounts of code, the part of the OS respon-
sible for time protection. To limit the cost of adaptation we
desire that these changes are restricted to a small number
of parameters of a highly abstracted model of the microar-
chitecture, and that the hardware provides a mechanism for
software to query the values of those parameters.

We assert the core property of the alSA:

Property 1: Security-enforcement

Any shared microarchitectural feature can either be
partitioned between security domains, or reset when
required by the OS.

Furthermore, resetting cannot help where the respective
hardware unit is shared by concurrent executions (on differ-
ent cores or hardware threads within a core), e.g. a shared
cache. This implies a second property:

Property 2: Secure concurrent sharing
Microarchitectural features accessed by concurrent
execution streams must be partitionable; partitions
must be completely static or OS-controlled.

OS control of changes is essential: In terms of information
flow, dynamic partitioning by hardware is no different from
a normal data or instruction cache, the dynamics can be
exploited as a timing channel.

As the OS cannot partition state accessed solely by virtual
address (Section 2), we require:

Property 3: Secure virtually indexed state
Hardware state indexed solely by virtual address must
not be concurrently accessible and must be resettable.

Note that if state is accessed by a combination of virtual
address and (temporary unique) thread ID, rather than virtual
address only, this condition does not apply.

APSys 18, August 27-28, 2018, Jeju Island, Republic of Korea

For partitionable hardware, the aISA must provide suf-
ficient information to allow the OS to do the partitioning.
For example, physically addressed caches of sufficient size
can be partitioned by page colouring, as long as the OS can
determine the number of available colours (which is usually
determined by the cache stride, but may be larger on some
processors [Yarom et al. 2015]).

Similarly, the reset mechanisms must be clearly defined.
As the latency of the reset may itself depend on execution
history (e.g. the number of dirty D-cache lines), it could be
used as a channel too. Hence, the reset must either be a
constant-time operation, or the OS must be able to pad it to
its worst-case latency.

Property 4: Specified mechanisms

The aISA must completely specify the mechanisms the
OS must use to partition or reset microarchitectural
features. Reset operations must be constant time or
have a specified worst-case latency.

For resettable state, the OS needs to know the kind of
information that is cached (data, instructions or addresses of
data or instructions):

Property 5: State provenance

The aISA must specify whether a reset operation acts
on state derived from data, instructions, data addresses
or instruction addresses.

Over-approximations are legal, e.g. it is acceptable to lump
all virtually-addressed microarchitectural state (caches, TLB,
branch predictor and prefetcher) into a single abstraction
with a single reset operation, or an abstraction can be spec-
ified to hold data and instructions when in fact it only is
affected by instructions. However, a somewhat more detailed
abstraction may have performance advantages.

6 DISCUSSION

It might seem that the aISA is nothing more than a flush in-
struction (and as such really an extension to the ISA). Yet this
is not true, as the aIlSA provides more than a functional spec-
ification of instructions. This is most obvious for Property 4,
but Property 3 as well as the combination of Property 1 and
Property 2 put obligations on the architect that go beyond
an ISA. Let us look at some implications.

6.1 Implications

Firstly, we note that Property 1 implies that the two options,
partitioning and reset, must not interfere with each other.
For example, the LLC may be trivially partitionable using
memory colouring. However, an instruction that flushes the
complete LLC would break partitioning, as an attacker (or
Trojan) could affect contents not only of its own cache parti-
tion but also others. If such an instruction exists, it must be

Qian Ge, Yuval Yarom, and Gernot Heiser

privileged, i.e. reserved for use by the OS, else the hardware
fails to observe Property 1.
We further observe that Property 2 seems to imply that
a multi-threaded core cannot be concurrently shared, but
all hardware threads must be allocated to the same security
partition. To enable secure sharing of a core (other than
by time multiplexing), the microarchitecture would have to
partition all state that is shared between hardware threads,
including L1 caches, TLB, branch predictors and prefetchers;
this would seem to turn the threads into full-blown cores.
Finally, the requirement for resets to be constant time or
have a defined latency bound might seem restrictive at first
glance. We do not think that this is the case: Resetting will
really apply to on-core resources and core-private caches
such as a private L2. Almost all on-core state is read-only
data (derived from instructions or addresses). Resetting those
is most likely a constant-time operation anyway, taking a
small number of cycles (no more than the pipeline depth),
so guaranteeing constant-time execution should be trivial.
Resetting data caches requires flushing modified data
down the memory hierarchy, the latency of which will de-
pend on the number of dirty lines. It is unreasonable to force
this instruction to always execute with the same latency,
particularly since an L1-D flush has uses other than time pro-
tection. For example, it might be used to ensure coherency
between I- and D-cache in the case of just-in-time compila-
tion or other instances of self-modifying code. Instead, it is
sufficient to specify the maximum latency of the flush, so
the OS can pad to the worst case if needed. Alternatively, the
flush instruction could be parameterised, to provide the OS
with the choice between minimal and constant latency.
Stateless but bandwidth-limited hardware (interconnects)
are a real challenge. Partitioning is not supported on present
hardware, and it would seem to require partitioning band-
width (e.g. TDMA), which would likely have a significant
performance impact. As it is hard to see how such hardware
could be exploited as side channels, a solution might be to
accept the possible covert channel but prevent its use by
an attacker. Preventing speculative execution from being
visible beyond a core, i.e. prohibiting speculative loads from
a shared cache, might work, but more research is needed to
say whether this would is sufficient for enforcing security.

6.2 Cost

Resetting microarchitectural state has a cost. We have ar-
gued above that the direct cost is low, except for data caches,
which must flush dirty data down the memory hierarchy.
In addition there is the indirect cost of starting with cold
caches/predictors. However, it must be noted that such flushes
are only needed when switching security domains, not when
switching between threads of the same domain. In many

Time Protection: We Need a New Hardware-Software ContractAPSys *18, August 27-28, 2018, Jeju Island, Republic of Korea

cases, security domains are heavyweight, e.g. virtual ma-
chines in a cloud scenario, which are typically switched at a
rate of 10-100 Hz. Such a long execution time implies that
caches are cold anyway after a switch, which means that the
cost of flushing dirty lines and missing in the cache is paid
anyway.

There are scenarios where domains are switched more
frequently, such as when a browser executes untrusted
JavaScript code. Our experiments show that the worst-case
cost of an L1-D flush is about a microsecond, which seems a
bearable cost for security. However, a more detailed evalua-
tion is clearly needed.

The performance implications of partitioning caches are
well-researched in the architecture community. For example,
Sanchez and Kozyrakis [2011] find that the average perfor-
mance cost of statically partitioning the LLC between cores
is 7%. This is far less than the cost of the Spectre or Meltdown
defences that are presently being deployed.

7 RELATED WORK

Microarchitectural timing channels have been an active field
of research for considerable time, with work on attacks and
defences accelerating over the past decade, see the survey
by Ge et al. [2018]. In particular, the recent Meltdown [Lipp
et al. 2018] and Spectre [Kocher et al. 2019] attacks brought
awareness of these threats to a mainstream audience. Spectre
is particularly relevant in our context as it demonstrates
the importance of covert channels, while most recent work
focusses on side channels.

Mitigations are mostly based on partitioning [Liedtke et al.
1997; Lynch et al. 1992; Shi et al. 2011] or flushing [Godfrey
and Zulkernine 2013; Guanciale et al. 2016; Osvik et al. 2006;
Zhang and Reiter 2013]. Partitioning of on-core state is only
possible with non-standard hardware support [Domnister
et al. 2012; Wang and Lee 2007]. Our work shows that flush-
ing is not sufficiently supported on commodity processors.

As exploiting timing channels requires timing of events,
a defence is to deny attackers access to a time source. Com-
pletely virtualising time [Aviram et al. 2010a,b; Li et al. 2013]
in principle eliminates timing channels, but comes with high
overheads and is infeasible in many real-world situations.
In particular, it does not apply to Spectre attacks. The same
holds for injecting noise, as with fuzzy time [Hu 1991], the
AES implementation proposed by Brickell et al. [2006] which
randomises the cache footprint of lookup tables, or the ran-
dom fill cache of Liu and Lee [2014], which randomises the
address loaded to the cache in case of a cache miss.

Tiwari et al. [2009] suggested a leasing approach to share
hardware resources between threads, which guarantees
bounds on resource usage and side effects. Tiwari et al. [2011]
later proposed a solution for top-to-bottom information flow

guarantees, including a Star-CPU, a microkernel, and an I/O
protocol. This is a fairly radical departure from mainstream
computing architectures and manufacturers of commodity
hardware will be hard to convince to go down this route.

Language-based approaches, such as language semantics
with deterministic execution latencies [Zhang et al. 2012],
are not black-box approaches and therefore not suitable for
OS-provided time protection.

There are proposals in the real-time space for improving
the accuracy of worst-case execution-time analysis, includ-
ing PRET [Edwards and Lee 2007], PREM [Pellizzoni et al.
2011] and our recent proposal for exposing more of the mi-
croarchitecture [Heiser 2018]. These proposals are primar-
ily concerned with ensuring the safety of critical real-time
systems, as opposed to information leakage, and are more
intrusive on architects.

8 CONCLUSIONS

Recent security exploits, such as Spectre, have demonstrated
that covert timing channels (and not just side channels) are
a mainstream threat to information security. As security
enforcement is a core responsibility of the OS, this means that
the well-established OS enforcement of memory protection
is insufficient, and the OS must also provide time protection.

However, our analysis demonstrates that mainstream com-
puter architectures do not provide sufficient mechanisms to
allow the OS to enforce this kind of isolation: As we demon-
strate on multiple generation of processors across the two
main ISAs, there exist timing channels that cannot be closed
by architected means, meaning the OS has no chance of pro-
viding time protection on present mainstream architectures.

We trace this problem to the fact that the ISA, which
constitutes the standard hardware-software contract, is too
abstract: It is a purely functional specification that cannot
capture the requirements for timing-channel freedom.

We infer that security requires a refined hardware-software
contract, the alSA. We specify the core properties the aISA
must satisfy to allow the OS to enforce real security. We
believe that this is a minimally-intrusive proposal that does
not limit architects’ ability to innovate, and can be imple-
mented and used without significant performance impact.
We also note that it is compatible with our recent aISA pro-
posal [Heiser 2018] aimed at improving real-time predictabil-
ity. In fact, achieving real-time safety requires exposing much
more of the microarchitecture than is needed for security,
which can get away with an opaque representation of mi-
croarchitectural state.

Operating systems built on hardware that offers an alSA
will be able to enforce time protection, which, among others,
would defeat Spectre attacks. For the sake of security, we
can only hope that architects and manufacturers will listen.

APSys 18, August 27-28, 2018, Jeju Island, Republic of Korea

ACKNOWLEDGMENTS

Part of this work was funded by the Australian Department
of Defence’s Next Generation Technology Fund.

REFERENCES

Onur Acii¢gmez. 2007. Yet another microarchitectural attack: exploiting I-
cache. In ACM Computer Security Architecture Workshop (CSAW). Fairfax,
VA, US.

Onur Acii¢mez, Billy Bob Brumley, and Philipp Grabher. 2010. New Results
on Instruction Cache Attacks. In Workshop on Cryptographic Hardware
and Embedded Systems. Santa Barbara, CA, US.

Anmittai Aviram, Sen Hu, Bryan Ford, and Ramakrishna Gummadi. 2010a.
Determinating timing channels in compute clouds. In ACM Workshop on
Cloud Computing Security. Chicago, IL, US, 103-108.

Anmittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. 2010b. Effi-
cient system-enforced deterministic parallelism. In Proceedings of the 9th
USENIX Symposium on Operating Systems Design and Implementation.
Vancouver, BC, 1-16.

Ernie Brickell, Gary Graunke, Michael Neve, and Jean-Pierre Seifert. 2006.
Software mitigations to hedge AES against cache-based software side
channel vulnerabilities. IACR Cryptology ePrint Archive 2006 (2006), 52.

David Cock, Qian Ge, Toby Murray, and Gernot Heiser. 2014. The Last
Mile: An Empirical Study of Some Timing Channels on seL4. In ACM
Conference on Computer and Communications Security. Scottsdale, AZ,
USA, 570-581.

Patrick]J. Colp, Jiawen Zhang, James Gleeson, Sahil Suneja, Eyal de Lara,
Himanshu Raj, Stefan Saroiu, and Alec Wolman. 2015. Protecting Data
on Smartphones and Tablets from Memory Attacks. In International
Conference on Architectural Support for Programming Languages and
Operating Systems. Istambul, TK.

Data61, CSIRO. 2018. Timing Channel Mitigations. https://
ts.data61.csiro.au/projects/TS/timingchannels/arch-mitigation. pml.
Leonid Domnister, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and
Dmitry Ponomarev. 2012. Non-Monopolizable Caches: Low-Complexity
Mitigation of Cache Side Channel Attacks. ACM Transactions on Archi-

tecture and Code Optimization 8, 4 (Jan. 2012).

Stephen A. Edwards and Edward A. Lee. 2007. The Case for the Precision
Timed (PRET) Machine. In Design Automation Conference (DAC).

Dmitry Evtyushkin and Dmitry Ponomarev. 2016. Covert Channels through
Random Number Generator: Mechanisms, Capacity Estimation and Mit-
igations. In Proceedings of the 23rd ACM Conference on Computer and
Communications Security. Vienna, AT, 843-857.

Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Un-
derstanding and Mitigating Covert Channels Through Branch Predictors.
ACM Transactions on Architecture and Code Optimization 13, 1 (April
2016), 10.

Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018. A Survey of
Microarchitectural Timing Attacks and Countermeasures on Contem-
porary Hardware. Journal of Cryptographic Engineering 8 (April 2018),
1-27.

Matt Godbolt. 2016. The BTB in contemporary Intel chips. http://xania.org/
201602/bpu-part-three

Michael Godfrey and Mohammad Zulkernine. 2013. A Server-Side Solution
to Cache-Based Side-Channel Attacks in the Cloud. In Proceedings of the
6th IEEEInternational Conference on Cloud Computing. Santa Clara, CA,
US.

Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+Flush: A Fast and Stealthy Cache Attack. In Proceedings of the
13th Conference on Detection of Intrusions and Malware & Vulnerability
Assessment. San Sebastian, Spain.

Qian Ge, Yuval Yarom, and Gernot Heiser

Roberto Guanciale, Hamed Nemati, Christoph Baumann, and Mads Dam.
2016. Cache Storage Channels: Alias-Driven Attacks and Verified Coun-
termeasures. San Jose, CA, US, 38-55.

Gernot Heiser. 2018. For Safety’s Sake: We Need a New Hardware-Software
Contract! IEEE Design and Test 35 (March 2018), 27-30.

Wei-Ming Hu. 1991. Reducing timing channels with fuzzy time. In Proceed-
ings of the 1991 IEEE Computer Society Symposium on Research in Security
and Privacy. IEEE Computer Society, Oakland, CA, US, 8-20.

Intel. 2018a. Intel Responds to Security Research Findings.
https://newsroom.intel.com/news/intel-responds-to-security-
research-findings/

Intel. 2018b. Microcode Revision Guidance. https://www.intel.com/
content/dam/www/public/us/en/documents/sa00115-microcode-
update-guidance. pdf

Intel. 2018c. Root Cause of Reboot Issue Identified; Updated Guidance
for Customers and Partners. https://newsroom.intel.com/news/root-
cause-of-reboot-issue-identified-updated- guidance-for-customers-
and-partners/

Intel. 2018d. Speculative Execution Side Channel Mitigations.
https://software.intel.com/sites/default/files/managed/c5/63/336996-
Speculative-Execution-Side-Channel-Mitigations. pdf

Intel Corporation 2016. Intel 64 and IA-32 Architecture Software De-
veloper’s Manual Volume 2: Instruction Set Reference, A-Z. Intel
Corporation. http://www.intel.com.au/content/dam/www/public/us/
en/documents/manuals/64-ia-32-architectures-software-developer-
instruction-set-reference-manual-325383.pdf.

R. E. Kessler and Mark D. Hill. 1992. Page placement algorithms for large
real-indexed caches. ACM Transactions on Computer Systems 10 (1992),
338-359.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Haburg, Moritz Lipp, Stefan Mangard, Thomas Prescher,
Michael Schwartz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting
Speculative Execution. In IEEE Symposium on Security and Privacy. IEEE,
San Francisco, 19-37.

Butler W. Lampson. 1973. A Note on the Confinement Problem. Commun.
ACM 16 (1973), 613-615.

Peng Li, Debin Gao, and Michael K Reiter. 2013. Mitigating access-driven
timing channels in clouds using StopWatch. In Proceedings of the 43rd
International Conference on Dependable Systems and Networks (DSN).
Budapest, HU, 1-12.

Jochen Liedtke, Hermann Hartig, and Michael Hohmuth. 1997. OS-
controlled cache predictability for real-time systems. In IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE,
Montreal, CA, 213-223.

Moritz Lipp, Michael Schwartz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Reading Ker-
nel Memory from User Space. In USENIX Security Symposium. USENIX,
Baltimore, MD, USA, -.

Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot
Heiser, and Ruby B Lee. 2016. CATalyst: Defeating Last-Level Cache
Side Channel Attacks in Cloud Computing. In IEEE Symposium on High-
Performance Computer Architecture. Barcelona, Spain, 406-418.

Fangfei Liu and Ruby B Lee. 2014. Random fill cache architecture. In Proceed-
ings of the 47th ACM/IEE International Symposium on Microarchitecture.
Cambridge, UK.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015.
Last-Level Cache Side-Channel Attacks are Practical. In IEEE Symposium
on Security and Privacy. San Jose, CA, US, 605-622.

William L. Lynch, Brian K. Bray, and M. J. Flynn. 1992. The effect of page
allocation on caches. In ACM/IEE International Symposium on Microar-
chitecture. 222-225.

https://ts.data61.csiro.au/projects/TS/timingchannels/arch-mitigation.pml
https://ts.data61.csiro.au/projects/TS/timingchannels/arch-mitigation.pml
http://xania.org/201602/bpu-part-three
http://xania.org/201602/bpu-part-three
https://newsroom.intel.com/news/ intel-responds-to-security-research-findings/
https://newsroom.intel.com/news/ intel-responds-to-security-research-findings/
https://www.intel.com/content/dam/www/public/us/en/ documents/sa00115-microcode-update-guidance.pdf
https://www.intel.com/content/dam/www/public/us/en/ documents/sa00115-microcode-update-guidance.pdf
https://www.intel.com/content/dam/www/public/us/en/ documents/sa00115-microcode-update-guidance.pdf
https://newsroom.intel.com/news/ root-cause-of-reboot-issue-identified-updated-guidance-for-customers-and-partners/
https://newsroom.intel.com/news/ root-cause-of-reboot-issue-identified-updated-guidance-for-customers-and-partners/
https://newsroom.intel.com/news/ root-cause-of-reboot-issue-identified-updated-guidance-for-customers-and-partners/
https://software.intel.com/sites/default/files/managed/c5/ 63/ 336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/ 63/ 336996-Speculative-Execution-Side-Channel-Mitigations.pdf
http://www.intel.com.au/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://www.intel.com.au/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://www.intel.com.au/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf

Time Protection: We Need a New Hardware-Software ContractAPSys *18, August 27-28, 2018, Jeju Island, Republic of Korea

Clémentine Maurice, Manuel Weber, Michael Schwartz, Lukas Giner, Daniel
Gruss, Carlo Alberto Boano, Kay Romer, and Stefan Mangard. 2017. Hello
from the Other Side: SSH over Robust Cache Covert Channels in the
Cloud. In Network and Distributed System Security Symposium (NDSS).
San Diego, CA, US.

Milena Milenkovic, Aleksandar Milenkovic, and Jeffrey Kulick. 2004. Mi-
crobenchmarks for Determining Branch Predictor Organization. Soft-
ware: Practice and Experience 34, 5 (April 2004), 465-487.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and
Countermeasures: The Case of AES. In Proceedings of the 2006 Crytogra-
phers’ track at the RSA Conference on Topics in Cryptology.

Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell,
Marco Caccamo, and Russell Kegley. 2011. A Predictble Execution Model
for COTS-based Embedded Systems. In IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). 269-279.

Colin Percival. 2005. Cache Missing for Fun and Profit. In BSDCon 2005.
Ottawa, CA.

Daniel Sanchez and Christos Kozyrakis. 2011. Vantage: Scalable and Efficient
Fine-Grain Cache Partitioning. In International Symposium on Computer
Architecture. 57-68.

Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang. 2011. Limiting cache-
based side-channel in multi-tenant cloud using dynamic page coloring. In
International Conference on Dependable Systems and Networks Workshops
(DSN-W). HK, 194-199.

Mohit Tiwari, Xun Li, Hassan M. G. Wassel, Frederic T. Chong, and Timo-
thy Sherwood. 2009. Execution Leases: A Hardware-supported Mecha-
nism for Enforcing Strong Non-interference. In Proceedings of the 42nd

ACM/IEE International Symposium on Microarchitecture. New York, NY,
US.

Mohit Tiwari, Jason K Oberg, Xun Li, Jonathan Valamehr, Timothy Levin,
Ben Hardekopf, Ryan Kastner, Frederic T Chong, and Timothy Sherwood.
2011. Crafting a usable microkernel, processor, and I/O system with
strict and provable information flow security. In Proceedings of the 38th
International Symposium on Computer Architecture. San Jose, CA, US.

Vish Viswanathan. 2014. Disclosure of H/W Prefetcher Control on some
Intel Processors. https://software.intel.com/en-us/articles/disclosure-
of-hw-prefetcher-control-on-some-intel-processors

Zhenghong Wang and Ruby B. Lee. 2007. New Cache Designs for Thwarting
Software Cache-based Side Channel Attacks. In Proceedings of the 34th
International Symposium on Computer Architecture. San Diego, CA, US.

Yuval Yarom. 2016. Mastik: A Micro-Architectural Side-Channel Toolkit.
http://cs.adelaide.edu.au/~yval/Mastik/Mastik. pdf

Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot Heiser. 2015.
Mapping the Intel Last-Level Cache. http://eprint.iacr.org/.

Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. 2012. Language-
based control and mitigation of timing channels. In Proceedings of the
2012 ACM SIGPLAN Conference on Programming Language Design and
Implementation. Beijing, CN, 99-110.

Yinqgian Zhang and Michael K. Reiter. 2013. Diippel: Retrofitting Commodity
Operating Systems to Mitigate Cache Side Channels in the Cloud. In
Proceedings of the 20th ACM Conference on Computer and Communications
Security. Berlin, DE, 827-838.

https://software.intel.com/en-us/articles/ disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://software.intel.com/en-us/articles/ disclosure-of-hw-prefetcher-control-on-some-intel-processors
http://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf

	Abstract
	1 Introduction
	2 Background
	3 Resetting State
	3.1 x86
	3.2 Arm

	4 Measuring Reset Efficacy
	4.1 Implementing timing channels
	4.2 Visualising channels
	4.3 Results

	5 The Augmented ISA: A New Hardware-Software Contract
	6 Discussion
	6.1 Implications
	6.2 Cost

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

