
SoK: Design Tools for Side-Channel-Aware Implementations
Ileana Buhan

Radboud University
The Netherlands

ileana.buhan@ru.nl

Lejla Batina
Radboud University
The Netherlands
lejla@cs.ru.nl

Yuval Yarom
University of Adelaide

Australia
yval@cs.adelaide.edu.au

Patrick Schaumont
Worcester Polytechnic Institute

USA
pschaumont@wpi.edu

ABSTRACT
Side-channel attacks that leak sensitive information through a com-
puting device’s interaction with its physical environment have
proven to be a severe threat to devices’ security, particularly when
adversaries have unfettered physical access to the device. Tradi-
tional approaches for leakage detection measure the physical prop-
erties of the device. Hence, they cannot be used during the design
process and fail to provide root cause analysis. An alternative ap-
proach that is gaining traction is to automate leakage detection by
modeling the device. The demand to understand the scope, benefits,
and limitations of the proposed tools intensifies with the increase
in the number of proposals.

In this SoK, we classify approaches to automated leakage detec-
tion based on the model’s source of truth. We classify the existing
tools on two main parameters: whether the model includes mea-
surements from a concrete device and the abstraction level of the
device specification used for constructing the model. We survey
the proposed tools to determine the current knowledge level across
the domain and identify open problems. In particular, we high-
light the absence of evaluation methodologies and metrics that
would compare proposals’ effectiveness from across the domain.
We believe that our results help practitioners who want to use au-
tomated leakage detection and researchers interested in advancing
the knowledge and improving automated leakage detection.

CCS CONCEPTS
• Hardware→ Power estimation and optimization; • Security and
privacy→ Side-channel analysis and countermeasures.

KEYWORDS
Side-Channel, Emulators, Power Analysis

ACM Reference Format:
Ileana Buhan, Lejla Batina, Yuval Yarom, and Patrick Schaumont. 2022. SoK:
Design Tools for Side-Channel-Aware Implementations. In Proceedings of
the 2022 ACM Asia Conference on Computer and Communications Security

This work is licensed under a Creative Commons
Attribution International 4.0 License.

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9140-5/22/05.
https://doi.org/10.1145/3488932.3517415

(ASIA CCS ’22), May 30-June 3, 2022, Nagasaki, Japan. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3488932.3517415

1 INTRODUCTION
When a computing device operates, it interacts with its physical
environment. In his seminal work, Kocher [53] showed that the
power consumption of a device correlates with the data it processes,
allowing the recovery of cryptographic keys. Since then, research
has demonstrated leakage of sensitive information via other side
channels, including electromagnetic emanations (EM) [39, 74], tim-
ing [11, 19, 71], microarchitectural components [14, 41, 58], and
even acoustic and photonic emanations [42, 55].

In response to developments in attacks, the community has devel-
oped several methodologies for leakage detection and assessment.
They involve collecting side-channel traces from the device and
analyzing these traces to demonstrate an attack or the existence
of leaks. While effective, such methodologies require the physical
device’s presence for evaluation, and this demand poses significant
challenges. First, the physical implementation may not exist, for
example, when verifying side-channel leakage while designing a
novel chip. Second, the physical implementation details may be
unknown when verifying side-channel leakage from a third-party
chip. Moreover, detecting, verifying, and mitigating side-channel
leaks require expert knowledge and expensive equipment.

In recent years, an alternative approach for evaluating device
resilience to side-channel attacks has emerged. Instead of measur-
ing the leakage from a physical device, leakage emulators aim to
evaluate the device’s model to reduce the effort required for leakage
detection and potentially perform leakage detection early in the
development process.

Early attempts of creating such tooling and the increased recent
efforts directed to this purpose prove the appeal of automation as

2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021

[30] [79]
[33]

[90] [28] [36]
[50]

[97]
[100]

[76] [98]
[72]
[63]

[56] [89]
[49]

[85]
[32]

[102]
[68]

[87]

[95]
[86]
[44]

Figure 1: Distribution of papers which propose a new tool
per year (for multiple publications on the same tool, we cite
the most recent one).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3488932.3517415
https://doi.org/10.1145/3488932.3517415

demonstrated in Figure 1. However, the abundance of proposed
tools does not necessarily offer a solution for practitioners. Each
tool aims to address a specific scenario, and with the increasing
number of proposals, it may be complex to identify the best tool
for each use case.

Moreover, there is no comparison of tools across the domain, pre-
venting a straightforward assessment of the benefits of each tool. A
comprehensive study of automated tooling available for computer-
aided cryptography covering the design, functional verification, and
implementation-level security of digital side channels was recently
published [6]. While the study covers tooling for side channels in
shared resources (e.g., cache), it excludes physical side channels,
particularly power consumption and EM radiation. This work cov-
ers the gap and presents a taxonomy of state-of-the-art tooling for
protecting against these physical side-channel attacks. We chart
the landscape and present a coherent view of current advances in
power and EM leakage evaluation automation. Specifically, we
● Give a comprehensive survey of the available tooling for leakage
detection, verification, andmitigationwhile clarifying the current
capabilities and limitations.
● Present a taxonomy for the published tools, bringing forward
their main innovations and potentials.
● Outline challenges and promising new research directions.

Through the classification and analysis of the published tools, we
identify the potential and the challenges we face when searching
for appropriate solutions. There are significant differences between
existing tools and some problems cross-cut the domain. In particular,
most tool proposals include an evaluation of the tool’s effectiveness.
However, many of these evaluations are not transferable. Thus,
it is impossible to compare the effectiveness of tools within the
domain. The problem is intensified by the need to satisfy multiple
aims, including simulation and detection accuracy, ease of use, and
computational complexity.

We believe the work presented in this paper is of interest for two
groups of people with distinct goals and challenges. The first group
consists of hardware designers creating side-channel secure designs
and side-channel hardened implementations. The second group is
security researchers implementing a hardened side-channel crypto-
graphic algorithm on an existing third-party chip. One could argue
that such tooling could help an adversary interested in extracting
a key from a specific device. However, we believe that this risk is
limited. The tools we describe aim at assisting designers in iden-
tifying the root cause of leakage. Attackers are less interested in
the cause of a leak and are more focused on recovering the key. In
summary, the contributions of this work are:
● We investigate an emerging research area on automated tools
for power and EM side-channel leakage detection and propose a
system for classifying such tools (Section 3).
● We survey and analyze post-silicon (Section 4) and pre-silicon
(Section 5) tools, identifying achievements in this area.
● We explore the cross-cutting questions by evaluating tools across
the domain (Section 6).
● We identify open problems and directions for future research on
the design of automated tools for leakage detection (Section 7).

2 PRELIMINARIES
In this section, we summarize terminology and other essential
concepts in side-channel leakage modeling.

2.1 Side-Channel Leakage
The power consumption and EM signals emitted from a device
correlate with the computation steps and the data processed when
performing computation. Consequently, monitoring the physical
properties of devices can reveal information about the operations
they carry and the data they process. To perform a side-channel
attack, an attacker attempts to correlate the physical properties
with secret values processed by the device. For example, the attacker
might look for a statistical difference between the means of power
consumption when processing two different secret values [45, 54].

Over the years, multiple sources of leakage have been identified.
The amount of power required to maintain a signal depends on the
logical state of the signal. Thus, signalling 1 requires a different
power level than signalling 0. Consequently, the power consump-
tion of a circuit directly correlates with the data the circuit processes.
Other effects, such as differing power required for changing the
logical state of a signal, the variations in signal propagation times
over the circuit, or cross-capacitance effects, all contribute to the
instantaneous power consumption of the device and therefore cor-
relate with the data it processes. We further discuss these and other
effects in Section 3.2.

Multiple approaches have been suggested for side-channel pro-
tection [22, 23, 35, 52, 64, 65, 92]. In particular, masking represents
each secret value using multiple shares [22, 52] such that the leak-
age of any subset of the shares is independent of the secret value.
However, theoretically secure defences often fail in practice, ne-
cessitating practical evaluations of devices and software to ensure
protection against side-channel leakage [5, 67].

2.2 Leakage Models
Side-channel attacks and defences both rely on leakage models,
which describe the salient features of themeasurements, abstracting
over the physical details of the device. To be useful, a leakage model
must be “correct” to accurately reflect reality and be informative
to be useful for key recovery. As in [72], we distinguish between
value- and distance-based leakage models. The leakage model is
value-based if it takes as arguments the set of intermediate values
of a cryptographic algorithm. Typical examples include the popular
Hamming-weight (HW), identity model (ID), or least-significant bit
(LSB). A leakage model is distance-based if it takes as parameters
any pairwise combination of the intermediate values [72]. Barthe et
al. [7] give three examples for distance-based leakage, as follows: (1)
transition leakage effect, such as a generalized Hamming distance
leakage model; (2) the revenant leakage effect, where sensitive data
from past executions may come back and influence the current
instruction; and (3) the neighboring leakage effect, which captures
the event where accessing or processing of a data storage unit, may
trigger a leak from a seemingly unrelated data storage unit [7].

2.3 Traces
A measurement of a device creates a trace, which represents the
measured physical quantity as a function of time. Throughout this

paper, we use the termmeasured trace to denote the traces acquired
from a physical device with the help of an oscilloscope and EM
probes. We use the term simulated trace to denote a time series
generated with a commercially available tool as part of an EDA
toolchain. Finally, the term leakage emulator stands for a device
emulator, which is a program connected to a leakage model that
creates a simulated trace.

2.4 Detection, Verification, and Mitigation
Leakage detection seeks evidence of sensitive data dependencies
in the measured traces. The tools used for leakage detection are
hypothesis testing. Due to hypothesis testing’s intrinsic nature, it is
only possible to confirm the leaks’ presence (and not the absence).
Leakage verification aspires to identify the cause of a leak. The most
straightforward way to verify a leak is to exploit it using an attack-
based evaluation. Alternatively, it is also possible to specify a set of
rules that violate (possible) assumptions required by the algorithm
to run securely e.g., register reuse by mask shares from the same
family. To determine the leak’s cause, a careful investigation of
the hardware and software’s internal working is required. Finally,
leakage mitigation will remove the cause of the leak.

3 PRE- AND POST-SILICON MODELING OF
SIDE-CHANNEL LEAKAGE

A fundamental property of side-channel leakage is that its origin
is the physical implementation of computations. While the leaked
informationmay relate to any higher level form of computing – such
as cryptographic software – the observation of power-based side-
channel leakage requires access to the the physical implementation
of the cryptographic computations.

The physical effects of computing are not harmful to computer
system security themselves; such effects only become side-channel
leakage when an association between the physical side-channel
leakage and a high-level property in the computation stack can
be made. Hence, fundamental to every side-channel attack is the
association of a high-level model with its physical implementation.
The accuracy of this association determines the success probability
of the attack.

3.1 Our Framework
Figure 2 summarizes the framework that is used to classify the
tools for leakage detection. There are two primary sources for such
information at a high level: measurements taken from the device
and the device’s design specifications. These two sources determine
the two main axes along which we classify the tools.

The first axis specifies the relationship between the model and
the hardware. In all tools, the model aims to predict the leakage
from the device. However, post-silicon tools build the model, at least
partially, based on measuring the device and using this measure-
ment to predict future behavior. In contrast, pre-silicon tools use
information about the device’s design to predict leakage without
observing the actual device. This distinction is not arbitrary. Pre-
and post-silicon tools serve different purposes and have different
capabilities. Pre-silicon tools aim to detect leakage early, before the
device’s production, allowing the designer the opportunity to mod-
ify the design before investing in manufacturing. Post-silicon tools,

Model Physics

Pre‐silicon Objective

Post‐silicon Objective

Continuous Time
Analog Values
Physical Power

Black‐Box

Discrete Time
Discrete Levels
Power Estimates

White‐Box

Behavioral

Structural

Systems ISA

Transistor LayoutProcessorsPCB

RTL

Gates

Logic Circuits

Regs

Circuits

Data‐dependent
Power

Transistor Dependency

Layout Dependency

Gate Dependency

State Transitions

ISA Dependency

RTL Dependency

Arch

Ops

Arch Dependency

Figure 2: Side-channel leakage modeling requires abstrac-
tion from the true physical source of side-channel leakage,
thereby also abstracting some sources of side-channel leak-
age. Pre- and post-silicon side-channel leakage modeling
both aim at building a model that reflects the true physical
source of side-channel leakage, but approach the problem
from opposite sides.

in contrast, start from a given device and aim to determine the leak-
age that a change in condition will cause. Pre-silicon tools operate
under a white-box scenario, where the model is created from the
device’s design. They, therefore, include information only available
to the manufacturer or trusted clients. On the other hand, post-
silicon tools operate under a black- or gray-box scenario, where the
tool operator does not have the full device description. However,
because these tools have access to actual measurements, they can
detect leakage that is not apparent from the design documents.

The second axis we use is the level of abstraction of the model.
The development of a hardware device typically proceeds along a
sequence of refinements, commonly captured in the Gajski-Kuhn
Y-chart [37]. With each refinement, the abstraction level decreases,
and more details about the target device become available. The
level of abstraction used for building the model has significant im-
plications on the tool’s capabilities. The more refined the model is,
the more leakage it can detect [3]. This observation is particularly
relevant for pre-silicon tools, where modeling at one level cannot
detect leakage caused by features chosen at lower levels of abstrac-
tion. For example, pre-silicon tools at the Register Transfer Level
(RTL) model time with cycle-accurate resolution. Such tools cannot
detect leakage caused by sub-cycle timing effects. Correspondingly,
modeling at a high level of detail requires access to the design
documents and a considerable investment of computational and
time resources. Figure 2 shows the primary abstraction levels in
the design of hardware devices and the types of data dependencies
apparent at each level. Finally, we note that because post-silicon
tools also draw on information measured from the concrete device,
such tools can detect leakage at a lower level of abstraction [72, 86].

3.2 Causes of Side-Channel Leakage
Power side-channel leakage is data-dependent power consump-
tion during secure computation. Past research demonstrates that
no single abstraction level can accurately capture all of the data-
dependent power consumption. Data dependencies that cause power-
based side-channel leakage may occur at every level of abstraction
in the system stack. However, dependencies at lower abstraction
levels are invisible at higher abstraction, which makes power-based
side-channel leakage hard to predict at a system level. This section
provides a bottom-up analysis of the causes of side-channel leakage,
and we clarify why modeling at every level of abstraction is impor-
tant. At several instances during the discussion, we mention the
secret-sharing (or masking) countermeasure, a popular method to
combat side-channel leakage in hardware. A secret bit is split in 𝑛

shares using 𝑛−1 random bits to yield an order-(𝑛−1) countermea-
sure. In a 𝑑-probing model, an adversary can take 𝑑 independent
observations. To be secure, the number of shares in a secret-sharing
countermeasure must fulfill 𝑛 > 𝑑 [52].

The bottom half of Figure 2 lists the data dependencies that
are known contributors to power-based side-channel leakage. The
vertical lines indicate abstraction levels corresponding to the labels
at the top of the figure. The highest abstraction level only captures
dependencies from state transitions. On the other hand, the lowest,
most detailed abstraction level captures all possible dependencies of
power consumption to data, from state transitions down to layout
dependencies, which leads to the staircase shape of Figure 2. In
the following, we describe the nature of each dependency in a
bottom-up manner, from layout-level to system-level.

In CMOS (Complement Metal Oxide Semiconductor) circuits,
the mainstream technology for computers, power consumption
results from electrical charges that flow when transistors switch.
Moving charges requires effort (power) [34]. These charges flow
over on-chip wires and through transistor channels, causing addi-
tional internal resistive losses that dissipate as heat [75]. We can
observe the effects of moving charges in a circuit by measuring the
flow (current) through voltage drop over a shunt resistor or using
induction effects on a current probe. In addition, moving electrical
charges create electromagnetic fields governed by Maxwell’s laws.
We can capture the electromagnetic fields generated by a circuit
using E-field probes or H-field probes [8, 70]. Hence, EM-based
side-channel leakage and power-based side-channel leakage have a
single physical cause (moving electrical charges).

The power consumption caused by CMOS transistors is propor-
tional to the number of switching events (≈ the amount of charge
moved) per transistor per unit of time. However, the size of each
electrical charge, and therefore the resulting power consumption
depends on the physical topology and size of the transistors and
on-chip wires [75]. In addition, second-order parasitic effects, such
as the capacitive coupling between neighboring on-chip wires, may
cause the amount of charge moved by a switching event to depend
on the joint value of two neighboring wires. Parasitic coupling can
directly degrade the secrecy of secret-sharing schemes when two
or more shares become electrically coupled [24].

At gate-level, analog voltage levels become bits, and logic gates
provide elementary boolean computations using those bits. Digital
gates consume power when they switch, similarly to their atomic

component, the transistor. The number of gates driven by a digital
gate is called the fan-out, and it is a measure of how hard a gate
must work during a switching event: gates with a higher fan-out
will consume more power during a switching event. The majority
of logic circuits operate according to the synchronous paradigm,
where clock cycles drive the execution of sequential computations.
However, logic gates do not switch exclusively during clock-edge
events and each logic gate computes its output with a slight delay
called the transition delay. Logic gates deep into a logic network
may switch multiple times per clock cycle when their inputs do
not arrive at the exact moment. These transient switching events
are called glitches, and they make up 15–20% of the dynamic power
consumption [88]. Glitches depend on the joint value of network
inputs, and for this reason, they may also potentially degrade the
secrecy of secret-sharing schemes [61].

Gate-level logic circuits are abstracted into functional expres-
sions on registers at RTL level and the closely related microarchi-
tecture level. The switching events model power consumption at
this level in a record. The Hamming distance between successive
values stored in a register approximates these switching events.
Storing a secret value into a register will cause side-channel leakage
twice, first when loaded and then when a new value overwrites
it. To prevent side-channel leakage, the predecessor and successor
values of the secret must be uniformly random and independent
of the secret, which is a requirement that is hard to achieve in a
general-purpose environment. The leakage effect also degrades
secret-sharing schemes when two shares occupy the same register
during different clock cycles.

At the Instruction-Set Architecture (ISA) level, the dependencies
of the microarchitecture disappear, and power is modeled in terms
of the visible machine state only, such as programmer-visible reg-
isters and memory. The dependencies are similar to those at the
microarchitecture level: every store that contains a secret value can
leak two times, at the start and the end of the value’s lifetime in that
store. At System-level, all implementation details have disappeared,
and the power consumption is only visible as system-level state
transitions, such as in the overall control flow of a software program.
At this level, power-based side-channel leakage is a mechanism to
implement timing attacks.

Data dependencies on power consumption are a byproduct of
the pre-silicon design process. Therefore, it is generally impossible
to guarantee that a partially completed design (say, the RTL design
of a RISC-V processor) will be free of side-channel leakage later, at
a more refined design stage. Instead, in the pre-silicon setting, the
design verification for side-channel leakage must, in principle, be
repeated at every abstraction level to ensure no new dependencies
appear. In the post-silicon stage, all data dependencies on power
are present from the start of the design process, but they may be
unknown to the application programmer.

We traditionally measure power consumption near the source of
consumption, perform side-channel attacks on lab setups with ideal
observation conditions. However, that is not a requirement for a suc-
cessful side-channel attack. Recent work has demonstrated the use
of indirect effects of power side-channel leakage when the attacker
is co-located on the same chip [83, 104], on the same machine [57],
or even within the range of a wireless transmission [21].

Figure 3: High-level architecture of a pre and post-silicon emulator.With continuous line, we denote the essential components
required for leakage detection and, with a dotted line, the optional but helpful functionality of verification and mitigation.
One of the evident differences between the two is the object of the simulation. Post-silicon emulators, see Section 4, are used
for securing software implementations; when present, the physical target generates a more precise leakage model. Pre-silicon
emulator, see Section 5, are used to secure a hardware target, which in some cases are tested in combination with a software
implementation.

3.3 Pre- and post-silicon tools for Side-Channel
Leakage

Following the two scenarios above, we divide existing tooling into
two categories. The first category is post-silicon, which given a soft-
ware implementation of a cryptographic algorithm and (possibly)
the end device, aim to produce a power or an EM trace that closely
resembles a laboratory measurement performed by expert security
analysts. The second category is the pre-silicon tooling which can
find and remove leaks in crypto cores (hardware implementations)
and cryptographic algorithms.

Albeit a generic architecture, which covers all corner cases, is dif-
ficult to specify, we attempt in Figure 3 to capture a high-level view
of the salient components for both pre-and post-silicon emulator1.
We observe that tools in both scenarios share the same goals and are
used to detect, verify, and mitigate side-channel leaks. During post-
silicon evaluation, no changes are possible to the end-device (in
most cases, a general-purpose microcontroller). Hence, the typical
evaluation target is a software implementation of a cryptographic
algorithm. The most basic functionality of a post-silicon emulator
is that of leakage detection, Figure 3 (left). There are two main ap-
proaches to this task. The first, and by far the most common, mimics
leakage detection in real traces by first generating a set of simu-
lated traces and then applying a leakage detection method (e.g. Test
Vector Leakage Assessment i.e. TVLA [45]). Generating realistic
simulated traces depends significantly on the amount of informa-
tion available about the target end device. The second approach is to
check properties to identify undesired interactions between sensitive

1we use the term leakage emulator and emulator interchangeably

variables. To verify leakage and pinpoint the source of the leak, the
structure or architecture of the target device must be known [72].
In case of leakage verification execution traces, which represent a
set of events (such as instruction, register access or other) ordered
by the algorithm execution, are used to annotate the traces. Using
annotation, we can link the timing of side-channel leakage to al-
gorithmic events, thereby identifying the leakage source. Leakage
mitigation requires additionally the ability to modify the target
device by reprogramming or reconfiguring [86].

There is more flexibility in making changes to the end-device
during a pre-silicon evaluation, so both hardware and software
implementations of cryptographic algorithms are in scope, Figure 3
(right). One significant difference between the pre and post-silicon
tooling is the amount of information available for deriving a suitable
leakage model. Both estimation and simulation of power consump-
tion using commercial tooling are possible.

4 POST-SILICON TOOLING
Table 1 presents a taxonomy of tools available for post-silicon
side-channel evaluation, listed in chronological order. Based on
their capabilities, we classify the tools into three categories: detec-
tion, verification, and mitigation, which we discuss subsequently
in detail. We explicitly mention the supported leakage model (LM),
which impacts the tool’s effectiveness. At one end of the spectrum,
standard black-box leakage models, such as Hamming weight or
Hamming distance, can be applied independently of the intended
physical target. Such black-box leakage models only require a high-
level description of the implementation and a rough estimate of
the actual power or EM consumption, which is enough to model

the data dependencies during the execution and give valuable in-
sights into value-based leakage. At the other end of the spectrum,
gray-box leakage models learn from the intended target’s behavior
by acquiring traces from the actual implementation, making the
analysis specific to a particular sequence of instructions.

The amount of information and the degree of control of the end-
device available when building the emulator determines the tool’s
capability (detect, verify, or mitigate) and impacts the granularity
of the model of leakage from the end-device. On the downside, the
more information an emulator captures about the target, the less
portable to other architectures it becomes.

Some tools do not model a physical end-target [76, 79]. As such,
they are beneficial for both pre-and post-silicon evaluations.

We chose to list them in this category as these tools can be used
for early design stages of software implementation, as the typical
use case for post-silicon evaluation tooling. As masking is one of
the fundamental countermeasures for software implementations,
we find it necessary to specify whether a tool was applied on a
masked implementation (Masking).

In the rest of this section, we describe post-silicon tooling for
leakage detection, verification, and mitigation, highlighting current
achievements in each category.

4.1 Leakage detection at post-silicon stage
Generic framework for modeling microarchitectural details.
Debande et al. [28] are the first to point out the significance of real-
istic leakage models and to propose a gray-box trace emulator. The
tool uses stochastic modeling to fit a function of state bits and state
transitions. It starts from a fixed model and estimates the state tran-
sitions for each bit in the target register. The formula for deriving
the power trace would remain the same for different physical tar-
gets, but the coefficients would be different. We consider ELMO [63]
to be the first genuinely gray-box emulator for the ARM-Cortex
M0/M4 family, and it brings two remarkable innovations. The first is
a portable framework for building a leakage model rather than esti-
mating the coefficients for a fixed model, as is the case for stochastic
modeling. ELMO achieves this by considering the contribution of a
parameter before deciding to include it in the model. In contrast
to the approach used by Debande et al., the formula for deriving
power traces depends on the level of details available about the
microarchitecture implementation available and the contribution of
each (group) of variables to the overall model prediction capability.
The second innovation that ELMO brings is the extension of the
model to support sequence dependency. The critical observation is
that the power consumption of different instructions depends on
preceding instructions [93]. ELMO is instruction-accurate, which
has the advantage of quickly allowing the identification of a leaky
instruction. Following a cluster analysis to group “similar” instruc-
tions (i.e., which leak information in the same way), the authors
identify five groups, which interestingly also correspond to the
same processor component: ALU instructions in one group, shift
instructions as another group, load, and stores that interact with
the memory as two or more groups, and multiply instruction with a
distinct profile due to its single cycle implementation. The authors
find a remarkable consistency in the data-dependent leakage of
different physical boards. The only downside for extending the

proposed framework to other architectures is the amount of human
effort to put into it.

ELMO* [86] improves the leakage model of ELMO by capturing
interactions that span multiple cycles. ELMO [63] is augmented to
account for the storage elements, which play a critical role in the
security of masked implementations. A novel feature of ELMO* [86]
is a battery of small code sequences which can highlight the inter-
action of instructions via storage elements systematically. Marshall
et al. [62] extend the idea of discovering sources of leakage by in-
tentionally triggering leakage effects with specially crafted code
sequences and put forward 23 new benchmarks covering microar-
chitecture implementation related to memory such as hidden mem-
ory states, sequential access or data-bus width, pipeline registers,
control-flow instructions, and the impact of speculative execution
in short pipelines.
Reverse Engineering of microarchitectural implementations.
While the importance of microarchitecture details in a security
analysis has been established [62], access to its implementation is
typically not available. The current state of the art allows reverse
engineering a commercial ARM-Cortex M3 microprocessor [40].
The authors note that the current methodology involves intensive
manual effort. However, it is worthwhile as it shows the importance
of capturing microarchitectural effects.
EM simulation at post-silicon stage.While both EM and power
are important for SCA evaluations, modern micro-controllers, with
multiple power domains, can be immune to power side channels
but can leak in the EM domain. EMSIM [85] is the first EM emula-
tor built for a custom 32-bit base RISC-V implementation. EMSIM
supports data- and instruction-dependent activities and microarchi-
tecture effects such as pipeline stalls, cache miss, and misprediction.
The designers of the emulator have white-box access to the design
details of the target microprocessor. To reduce the number of in-
structions to be fitted, the authors perform clustering of the power
consumption of the instructions and observe that the RISC-V ISA
can be clustered into seven categories when the instructions have
similar operands.

Interestingly, ELMO [63] used instruction clustering to simplify
the modeling of the target. The authors also investigate the model
accuracy as a function of manufacturing variability (same manu-
facturer, different physical boards). Although the authors detected
a slight shift in the clock frequency for different boards, the conclu-
sion is that this shift has no impact on the emulator’s accuracy.

4.2 Leakage verification at post-silicon stage
Verification at high abstractions levels is effective. After de-
tecting a leak in an implementation, mitigating the leak requires
discovering the source of the leak. Tools capable of locating the
source of a leak can map a time sample in the power trace to the
precise instruction corresponding to that time sample.

The tool proposed by Reparaz [76] can detect leakage in masked
implementations of high-level code. The tool has a trace generation
feature that uses a black-box leakage model. For each time sample,
the tool records the value of the processed variable. It then applies a
fixed-vs-fixed test to detect leakage. As the tool records which vari-
ables correspond to the leaky sample, it can locate the source of the
leakage. SAVRASCA [98] uses the tracing feature of the SimulAVR

Table 1: Tools for post-silicon side-channel evaluation (chronological order)

Name Year LM End-device Detect Verify Mitigate Masking SC Open-Source

PINPAS [30] 2003 smartcards ✓ – – ✗ power ✗
Inspector SCA [79] 2007 not relevant ✓ – – ✗ power ✓ $
Oscar [90] 2009 AT90XX, ATmegaXX ✓ – – ✗ power ✗

Debande [28] 2012 not specified ✓ – – ✗ power ✗
Gagnerot [36] 2013 RISC-V(not specified) ✓ – – ✗ power ✗
SILK [97] 2014 ATmega328P ✓ – – ✗ power ✓
SLEAK [100] 2014 ARM Cortex A8 ✓ ✓ – ✓ register access ✗
Reparaz [76] 2016 not relevant ✓ – – ✓ power ✗
SAVRASCA [98] 2017 ATMega163 ✓ ✓ – ✓ power ✓

ASCOLD [72] 2017 ATMega163 – ✓ ✓ ✓ ILA ✓

ELMO [63] 2017 ARM Cortex M0 ✓ – – ✗ power ✓

EMSIM [85] 2020 RISC-V(custom) ✓ – – – EM ✗

ELMO∗ [86] 2021 ARM Cortex M0 ✓ – – ✓ power ✓

ROSITA [86] 2021 ELMO∗ ARM Cortex M0 ✓ ✓ ✓ ✓ power ✓

We use to represent a black-box leakage model (LM); to represent a gray-box model. We tick the box for masking
for the tools that report a case study involving a masked algorithm.

tool and is suitable for the analysis of code for the AtmelAVR family.
The emulator can produce both power and execution traces. The
leakage model is computed during each memory unit access (avail-
able via the tracing feature of SimulAVR), distinguishing between
write and read accesses. The separation allows for different leakage
functions depending on the type of access (Hamming weight for
reading and Hamming distance for writing). The emulator produces
one power sample per executed instruction and does not consider
the memory unit’s address.

SLEAK [100] models an ARMCortex A8, a complex processor.
To access the values of intermediate states, SLEAK uses Gem5 as
an open source-full system simulator. However, the Gem5 model
for this CPU has an average 7% of errors stemming from the mi-
croarchitecture events and execution time. [99]

4.3 Leakage mitigation at post-silicon stage
While verification tools still rely on a human expert to remove
leakage, mitigation tools aim to apply the fixes automatically.
Generic code-rewrite for trace emulators. ROSITA [86] is a rule-
driven code rewrite engine that patches the code automatically once
leakage is detected. ROSITA starts with a (masked) implementation
of a cryptographic algorithm, cross-compiled to produce both the
assembly and the binary executable. A very compelling feature
of ROSITA is that it extends an existing leakage detection tool,
ELMO [63] to report instructions that leak secret information. The
new detection framework (ELMO∗), uses the binary file to detect
leakage and identify the offending machine instruction; ROSITA
then applies a set of rules that replace the leaky instruction with an
equivalent one (functionally) that does not leak. ROSITA repeats
the process until no more leakage is detected.

5 PRE-SILICON TOOLING
The world of pre-silicon side-channel leakage verification tooling,
while at first glance relatively rich (see Table 2), is limited by the
fact that these tools are not public and the results are difficult to
reproduce. Additionally, the reported results consider prototype
chip designs, which might require effort to adapt to a complex chip
design. While any measurable data-dependent power dissipation

may be a source of side-channel leakage, there is a trade-off be-
tween the precision and the simulation speed. Higher abstraction
levels (ISA, RTL) will offer quick power estimates. Still, they will
miss SCA leakage sources, while lower abstraction levels (gate lay-
out) consume more simulation time but are more precise. In the
following, we summarize the achievements of tools in this category.

5.1 Leakage detection at pre-silicon stage
Power estimates at different abstraction levels speed-up the
generation of power signals. NCSIM [33] is the first white-box
emulator to estimate the resistance to differential power analysis
(DPA) [54] at the gate level. It neglects static power consumption,
but it can model glitches and early propagation when timing infor-
mation is available. The emulator supports several power estimation
functions. The simplest is transition counting (each time the signal
changes its logical state, the power consumption at the current
point is increased by one). A more refined power model is the ran-
dom transition weighting, which captures the variations in load
capacitances across gates. In terms of speed, NCSIM reports that a
transistor-level simulation of an internal MOV operation, including
the initialization phase of the core, has taken about 10 hours vs. the
logic simulation that finishes in a few minutes.

PLAN/PARAM [32] estimates the power consumed by a module
as an aggregation of the power consumed by all signals present in
the module. The assumption to support this choice is that the power
consumption of a𝑘-bit signal is proportional to its Hammingweight.
The benefit of this approach is that the whole Shakti-C processor’s
evaluation takes about 5 hours compared to a post-and-place route
simulation that would take an entire month.

RTL-PSC [49] estimates the power profile of a hardware design
using functional simulation at the RTL level. The power profile is
estimated based on the number of transitions using the Synopsys
VCS tool to ensure a fast framework. Compared to state-of-the-
art, RTL-PSC claims two advantages. The first is the ability to
quantitatively and accurately assess power side-channel leakage,
and the second is speed. The paper reports evaluation times for
AES circuits in the order of dozens of minutes, compared with over
30 hours for gate-level evaluations of the same circuits. The authors

Table 2: Tools for pre-silicon side-channel verification (chronological order)

Name Year Input End-device (description) LM Detect Verify Mitigate Masking Target SC Open-Source

NCSIM [33] 2007 gate SCARD [46] S ✓ – – ✗ CC power ✗
AMASIVE [50] 2013 RTL – E ✓ – – ✗ CA power ✗
MAPS [56] 2018 ISA ARM CortexM3 E ✓ ✓ – ✓ CA power ✓
KARNA [89] 2019 layout AES [12], SIMON [2] S ✓ ✓ ✓ ✗ CC power ✗
RTL-PSC [49] 2019 RTL AES-GF [1], AES-LUT [82] S ✓ – – ✗ CC power ✗
PARAM [32] 2020 gate RISC-V(ShaktiC) E ✓ ✓ – ✗ ED power ✗
ACA [102] 2020 gate RISC-V(LEON3) S ✓ – – ✗ CC power ✗
SCRIPT [68] 2020 gate AES-GF [1], AES-LUT [82] – ✓ ✓ – ✗ CC power ✗
CASCADE [87] 2020 gate ASIC (custom) E ✓ – – ✗ CC power ✓
PATCH [95] 2021 gate AES [96] E ✓ ✓ ✓ ✗ CC power ✗
COCO [44] 2021 gate RISC-V – ✓ ✓ – ✓ CA+ED power ✓

Input specifies the abstraction level for the input to the emulator, the supported end-device specified by the column End-device. For the leakage
model (LM) we have two options: simulated power (S) or estimated power (E) The Target column describes what is being simulated: .
the cryptographic core (CC), the cryptographic algorithm (CA) or the end-device (ED).

further estimate that the same circuit’s evaluation time at the layout
level would take more than one month.

ACA [102] uses a gate-level model for a target design, which is
typically available after logic synthesis, as well as a side-channel
leakage model. The latter leakage model is standard in DPA attacks.
The objective of ACA is to identify the gates in the design that
contribute the most to the selected side-channel leakage model.
ACA introduces the Leakage Impact Factor (LIF), a numerical score
that reflects the relative contribution of a single gate to side-channel
leakage. The authors demonstrate that only a handful of gates
are the majority contributors to side-channel leakage for several
different application scenarios (an AES engine, a Sparc-V CPU). This
finding leads to the mitigation strategy of selective replacement, in
which only those gates with high LIF are substituted and protected
by side-channel resistant versions.

CASCADE [87], a white-box emulator that aims to speed up the
time to market and reliability of the secure design uses an extended
version of the Hamming Distance model, named theMarching-Stick
Model (MSM) to model power consumption. MSM is a generic model
that captures the asymmetry between rising and falling edges, un-
like simple toggle counting. When the tool checks a masked im-
plementation using both the marching stick leakage model and
the PrimeTime with PX, we see that both results indicate the pres-
ence of second-order leakage, as expected. The second use case is
the Boyar-Peralta AES S-box [27, 43], which [101] showed to be
leaky. To demonstrate the presence of the mentioned vulnerability,
the setup used 10 million traces, but it takes CASCADE only 30
min to find the indicated vulnerability in the gate-level netlist. The
third analyzed S-box implementation is an in-house implementa-
tion of a PRESENT S-layer in WDDL [91], a dual-rail [23] logic
style. The analysis is done at gate-level netlist and place and route,
using the simulated (with PrimeTime) and estimated power with
the marching stick model. In all cases, the tool detects no leakage.

5.2 Leakage verification at pre-silicon stage
Formal verification at gate level.Both SCRIPT [68] andCOCO [44]
allow formal verification at gate level. However, while SCRIPT tar-
gets cryptographic cores, COCO aims to formally verify a masked
software implementation on a given hardware platform. The ap-
proach used for the formal proof, described below, is also different.

SCRIPT [68] takes as input a gate-level description of a crypto-
graphic core, and a target function, which can be a potential target
for side-channel attacks if it satisfies the following four properties:

● a function of the secret,
● a function of controllable inputs,
● a function with confusion property,
● and functions with the divide-and-conquer property.

The target registers, which store the target functions’ output val-
ues, are identified using information flow tracking. SCRIPT uses a
vectorless power estimation technique, which requires the verifica-
tion engineer to define the signal probability (the percentage of the
analysis when the input is driven at high logic levels) and the toggle
rate (the rate at which the net or logic element switches compared
to its input) of the primary input ports. PrimeTool (Synopsys) or
XPE (Xilinx) provide the vectorless power analysis, which returns
the total estimated power for the design.

COCO [44] allows security proofs at the gate level for the execu-
tion ofmasked implementations. The proofs use the time-constrained
probing model, which simulates the hardware of pipelined circuits.
As a first step, the tool executes the masked assembly implementa-
tion on a given CPU hardware design, the result being a trace execu-
tion which contains the concrete values for all CPU control signals
in each clock cycle. The location of the registers and memory cells
that contain shares of sensitive values are annotated. COCO uses
correlation sets and an SAT solver to find the gate and execution
cycle where the implementation leaks. COCO verifies adherence to
the following two design principles: first, that shares of the same
secret must not be accessed within two successive instructions,
and second, that its counterpart must not overwrite a register or
memory location which contains one share.
Open-source tooling. MAPS [56], is the first open-source verifi-
cation tool, a power emulator for the ARM Cortex M3 series. It
takes in assembly code and targets pipeline leakage, as they com-
bine operand values from consecutive instructions. For identifying
power leakage, it uses the fixed vs. random 𝑡-test [45]. Using in-
formation from an ARM Cortex M3 HDL file, the cause of a leak,
the registers related to the data path are isolated and traced. MAPS
restricts its operation to registers which deal with sensitive values
to simplify the tracing and reduce overhead.

MAPS is not cycle-accurate. While both MAPS and COCO [44],
the two open-source verification tools, can be used to verify masked
software implementations, MAPS supports only the ARM Cortex
M3 platform. At the same time, COCO can handle any given netlist.
SCA resilience for non-cryptographic designs. PARAM [32] is a
microprocessor design hardened for side-channel resistance. It is
a trace emulator, but it features a Power attack Leakage Analyzer
(PLAN) module, which works on the RTL source code to identify
the target microprocessor’s leaking module. The running example
is the open-source of the Shakti-C RISC-V processor. PARAM sees
the processor as a netlist of functional modules such as the main
pipeline, the ALU, data cache, or the instruction cache. The signals
(wires and registers) associated with the module are used as input
to estimate leakage for a given module. Once the power consump-
tion is estimated, SVF (Side-Channel Vulnerability Factor) [29] is
used to calculate the leakage. The authors do mention among the
caveats that PLAN can only capture linear leakage and leakage
due to dynamic power consumption (also the most exploited in
side-channel attacks).

5.3 Leakage mitigation at pre-silicon stage
Leakage mitigation tool at the layout level. KARNA [89] iden-
tifies vulnerable gates in the design and then re-configures them.
KARNA partitions the chip into small cells and performs TVLA as-
sessment for each cell. To estimate the power consumption, KARNA
uses commercial tooling, and the tool reveals leakage specific to a
given area. PATCH [95] detects leakage at gate-level and offers the
option of injecting hiding countermeasures. Although it currently
uses a 𝑡-test for leakage detection, its design is modular and allows
using other metrics.

6 METRICS AND EVALUATION
All research contributions to put forward a tool for leakage detec-
tion, evaluation, or mitigation typically contain a part dedicated to
the tool’s validation and experimental results. Validation is crucial
as it demonstrates the practical value of the tool in identifying
and removing side-channel leaks. This section examines the dif-
ferent metrics used to determine if the leakage emulator’s output
helps develop a side-channel hardened target. Among the presented
evaluation techniques, we identify four distinct groups:

(1) Comparison between simulated/estimated and reference traces,
relevant mostly for trace emulators.

(2) Evaluations of leakage model’s quality most often through
comparing it to a simpler model.

(3) Evaluation by case studies, where the emulator will find or
fix side-channel leaks (listed in Appendix B).

(4) Usability measures explore the benefits of using an emulator,
typically by comparing the performance of the tool with ei-
ther ameasurement setup for the post-silicon emulator or the
power simulation techniques for the pre-silicon emulators.

6.1 Metrics for evaluating the output of
leakage emulator’s

We can summarize the question answered by the metrics we place
in this group as follows: how close is the output of a leakage emulator
to the reference traces? The implicit assumption is that the closer

the leakage emulator’s output to the reference traces, the more
the output of the tool can be trusted. As the number of samples
in the emulator output differs from that in reference traces, it is
not straightforward to compare the two data sets (Appendix A lists
common choices). Most of these measures provide visual evidence
of similarity. Different boards exhibit different behaviors [15, 78]
that may cause slight variations between traces measured from var-
ious devices. This difference is relevant when matching simulated
traces with measured traces. However, we found no reference that
evaluates differences between sets of traces from different boards.

Aside from the fact that visual comparison is a subjective mea-
sure, typically due to space limitations, we only see one example
of how these match. It is fair to point out that quantifiable mea-
sures for assessing leaks are sparse and not widely accepted in the
side-channel community.

6.2 Metrics for evaluating the quality of the
leakage model

It is typical for the post-silicon evaluation tools [28, 63, 86], which
propose a complex leakage model to compare their performance
with simpler or previously known leakage models. In pre-silicon
emulators, we count in this category the metrics which quantify
the leakage identified by the emulator, compared to an ideal case
where the target does not leak information. In the following, we
list achievements in this category.
Empirical evidence that gray-level leakage models are supe-
rior to black-box leakage model. Although the statement above
might seem naive, the question of whether is worth investing time
and effort in creating sophisticated gray leakage models is valid. To
prove the merit of the ELMO leakage model [63], the authors use
power correlation to compare the predictions of a simple leakage
model (Hamming weight) with the prediction of leakage produced
by the ELMO model. The comparison consists of computing the
correlation traces produced by both leakage models on the same
reference traces. The result [63, Figure 4] shows that the peaks
in the correlation trace generated by the ELMO model are more
clearly defined compared to those produced by the simple model.
Additionally, the ELMO leakage model generates more peaks. The
authors conclude that the simple leakage model captures only a
portion of the actual leakage and should not be relied upon when
protecting sensitive data. ELMO∗ [86] uses the samemetric to show
its superiority over ELMO [63]. Debande et al. [28] use guessing
entropy to compare the performance of a simple black-box leakage
model with a profiled leakage model.
Metrics to quantify leakage of hardware components. Side-
Channel Vulnerability Factor (SVF) [29] quantifies the correlation
between attacker observation patterns and patterns in victim exe-
cution. The insight is that side-channel attacks rely on recognizing
leaked execution patterns. SVF quantifies the patterns in attack-
ers’ observations and measures the correlation with the victim’s
actual execution patterns, thus capturing the system vulnerabil-
ity to side-channel attacks. SVF quantifies a particular system’s
overall ‘leakiness’ but does not provide any insight into the cause.
PARAM [32] uses SVF to quantify the level of leakage in the differ-
ent components of the target processor.

Leakage Impact Factor (LIF), proposed in ACA [102], quantifies
the similarity of the activity profile of a single gate or cell to a high-
level leakage model used by DPA. The relative power consumption
of the cell is used as a weight coefficient for the LIF score. LIF
directly quantifies the contribution of a single gate or cell to the
side-channel leakage. It is used in ACA to rank the gates of the
design from leaky to least leaky.

6.3 Evaluating Usability
Next to security-related advantages, emulators also offer impor-
tant usability advantages for the implementation and testing of a
(masked) cryptographic primitive. The use of an emulator encour-
ages testing at different development stages, allowing the removal
of vulnerabilities as early as possible in the development cycle. For
post-silicon, the cryptographic implementation can be tested at
source-code level [76], assembly level [63], or compiled binary. It is
possible (and advisable) to test the design at RTL, gate, or transistor
level for pre-silicon.
● Ease of use and convenience. Building a setup for side-channel
measurement, is costly as it requires time, equipment, and exper-
tise for preparing the target. Furthermore, the implementation
and testing of a cryptographic primitive require advanced skills
in cryptographic engineering. An emulator is easy to use and
reduces a highly iterative task that requires (manual) effort.
Application: post-silicon.
● Fast(er) Development Cycles. The speed of simulating the power
consumption of a design is increasing as we progress with the
design stages. As the complexity of the design increases, [86]men-
tions a factor of 4.5–7-speed increase compared to real hardware.
As an extreme example [87] mentioned that for a fully-unrolled
AES (which exceeds the security budget of most embedded de-
vices), simulation and analysis of one million traces might take
about 4 hours on an 8-thread workstation. At the same time, we
have ample evidence (Appendix B) that leakage at early design
stages does have a positive effect. The flexibility in making design
changes and the leakage assessment time depends on the design
stage [49]. In other words, while it is relatively easy to make
changes at the RTL level, only small changes are possible at the
layout level. In contrast, at the post-silicon level, no changes in
the design are possible.
Application: pre-and post-silicon.
● Cost. Faster development cycles and assurance in the final product
ultimately increase the time tomarket of the product, which saves
costs or give a significant competitive advantage. For the post-
silicon development stage, the idea of performing side-channel
evaluation without the need of a lab and a team of experts avail-
able for assistance will make side-channel evaluation more ac-
cessible and as a result increase the security of cryptographic
implementations.
Application: pre-and post-silicon.

7 OPEN PROBLEMS IN DESIGNING
SIDE-CHANNEL LEAKAGE EMULATORS

Post-silicon: How can we efficiently create fine-grained leak-
age models? We now know that it is insufficient to make security
claims for an implementation based only on architecture [62] level

information. We also know that existing emulators target relatively
simple architectures. As can be seen from Table 1 the most com-
monly targeted end-devices are ATMegaXX or ARM-Cortex M0,
which are simple, in-order, single-core CPUs. With no access to de-
sign information, the task of the designer is to reverse-engineer the
microarchitecture details. Today we know how to model simple mi-
croarchitectural features, such as instruction-dependent activities in
different pipeline stages, add support for sequence dependency (the
power consumed by an instruction depends on the other instruc-
tions in the pipeline), or find hidden storage elements. However,
creating a model such as ELMO [63] or reverse-engineering the
ARM-CortexM3 [40] is still based onmanual work and prohibitively
effort-intensive. Capturing microarchitecture events characteristic
to complex processors, such as pipeline stalls or misprediction is
an open problem.
Post-silicon: Going beyond leakage detection is challenging.
To verify the source of a leak, we must have the ability to know
the instruction executed at that specific time sample in the power
trace. The tools which can map a time sample in a measured trace
to the corresponding instruction of the executed code are limited
and typically fall in two categories: either a machine emulator such
as Qemu [10], Gem5 [17] or SimulAVR [81] or specialized hardware,
such as JTrace Pro2 for boards with advanced debug support such
as the tracing features of ARM Cortex cores. Therefore, verification
depends on whether a machine emulator supports the board or a
tracing pin is available.
Post-silicon: Procedure for comparing simulated vs reference
traces. An open question is whether we should include the leakage
model in the evaluation. While most of the measures mentioned
do include a leakage model, the authors of EMSIM [85] use nor-
malized cross-correlation to show how well the simulated traces
match the reference traces without relying on a specific leakage
model. This metric’s output is a quantifiable measure because it
computes the average cross-correlation between individual clock
cycles. EMSIM reports an impressive 94.1% accuracy in simulating
side-channel signals across all possible instruction combinations.
The requirement to use this measure is to precisely identify the
correct clock cycles, which requires knowledge of the design details.
Although initially a measure of the side-channel created by a single
instruction, the Signal Available Attacker, (SAVAT) [20] is used in
EMSIM [85] to measure the similarity between the simulated and
reference traces. SCRIPT [68] uses side-channel vulnerability (SCV),
which is the equivalent of SNR [60] at the pre-silicon stage, as it
requires a small number of traces to compute and differs from SNR,
according to its authors by a scaling factor. RTL-PSC [49] combines
KL-divergence with SNR to identify vulnerable design blocks. At
the same time, SLEAK [100] uses mutual information between the
sensitive values processed by the algorithm and the value or state
of a system component during the execution binary.
Pre& Post-silicon: Quantitative measures for SCA resilience.
Most side-channel countermeasures come at the price of slower
performance or more area. On the post-silicon side, we know [5,
66] the importance of including microarchitecture features when
evaluating the security of masked implementations. However, most
studies focus on one platform and zoom in on the feature which

2https://www.segger.com/products/debug-probes/j-trace/models/j-trace/

https://www.segger.com/products/debug-probes/j-trace/models/j-trace/

leaks side-channel information on the studied platform. Even if
we knew how to model every microarchitecture event, there is no
widely acceptedmeasure in the side-channel community to quantify
leaks. We do not know how to measure the "gain" in security when
applying SCA countermeasures.
Pre-silicon: Common evaluation criteria for tools. The objec-
tive criteria for differentiating the metrics used by the different tools
would be to confirm the predictions with the results of the leakage
present on the physical device. The practical challenge is that there
are no open-source ASIC devices (i.e., we have access to the design
details) for testing. The current best practice approach is to use
FPGAs to confirm that the results produced by the tool are accurate.
However, the fundamentally different structure of an ASIC gate
and an FPGA configurable block leaves room for unexpected leaks
in the final product.
Pre-silicon: Composability of pre-silicon emulators. While power
simulation techniques are known and used, the primary application
is heat dissipation and battery life. The goal of power estimation
applied for side-channel evaluation is to capture the instantaneous
power consumption. One of the essential requirements is to pro-
cess large quantities of data-dependent simulations. This category’s
main challenge is to find and remove the design specifications that
do not contribute to leaks, such as to gain speed. Today we have
SCA-aware design tools for every design stage. We also know that
removing vulnerabilities as early as possible in the design stage
is a sound engineering practice. Although creating a pre-silicon
trace emulator requires significant effort, the existing tooling is
fragmented and not reusable.
Pre& Post-silicon: EM simulation. The only EM emulator we
have, EMSIM [85], was constructed for a relatively simple, custom-
made RISC-V processor. To build EMSIM, EM measurements of
the physical device are required. The experimental results aimed
to assess how the simulated signal degrades when key microar-
chitectural features are removed, show that building an accurate
EM emulator is impossible without access to microarchitectural
information. Therefore we may only be able to build EM emulator
for open-source hardware. If the presence of a physical target is a
must for constructing EM emulator, it could explain the fact that
there are no EM emulators at the pre-silicon stage. To build a power
estimator, how have to estimate ’only’ how much electrical charge
is being moved around (Ohm’s Law). The build an EM emulator,
we have to estimate not only the quantity of charge, but also its
precise orientation in 3D space (Maxwell’s 4 Laws). It is unclear
how to port the approach used in EMSIM [85] to more mainstream
processors. There is no CAD tool for pre-silicon to compute the
magnetic field radiated by ICs and hence no methodology to detect
hotspots at the design stages. Some hope for creating emulators for
the pre-silicon stage comes [73], who introduces a workflow for
predicting the EM radiations of an IC.
Pre& Post-silicon: Benchmark existing emulators. While some
emulators are available and open-source, the specific use-case for
the tools makes it hard to compare. An alternative is to agree on
a representative, public data set that covers different use-cases to
evaluate the potential of a tool. Differentiating the merits of the
tools is challenging. If we compare the architectures of the tools,
Figure 3 (right), we notice that SCRIPT and COCO use the user
input to define safety conditions for the underlying architecture. To

determine the presence of a leak, MAPS and PLAN/PARAM employ
empirical leakage detection strategies, 𝑡-tests [45] and SVF [29]
respectively. Also, let’s compare the emulator’s input. We observe
that while MAPS and COCO target a masked software implementa-
tion, SCRIPT aims to verify crypto cores, and PLAN/PARAM aims
to secure the end-device or non-cryptographic implementation.
If we explore the dimension of security guarantees, SCRIPT and
COCO aim for formal proof, while MAPS and PLAN/PARAM take
an empirical testing approach.

Although in recent years the standard practice is to open-source
tools (as the authors are primarily from academia), for many of
the earlier tools [30, 36, 90] we only have a description about the
capability and innovations of the tool, which inmany cases provides
limited information.
Pre& Post-silicon: Lacking case studies for asymmetric cryp-
tographic implementations. All case studies we encountered
in the existing literature are focused on the implementation of
symmetric algorithms.

ACKNOWLEDGMENTS
This research was supported by The Australian Research Council
Discovery Early Career Award DE200101577 and Discovery Project
DP210102670, the Blavatnik ICRC at Tel-Aviv University, the Na-
tional Science Foundation award CNS-1931639, a gift from Intel
Corporation, and received funding in the framework of the NWA
Cybersecurity Call with project name PROACT with project num-
ber NWA.1215.18.014, which is (partly) financed by the Netherlands
Organisation for Scientific Research (NWO).

REFERENCES
[1] Aoki Laboratory. 2007. Galois field based AES Verilog design. http://www.aoki.

ecei.tohoku.ac.jp/crypto/web/cores.html. (accessed: 20-Nov-2021).
[2] Aydin Aysu, Ege Gulcan, and Patrick Schaumont. 2014. SIMON Says: Break

Area Records of Block Ciphers on FPGAs. IEEE Embed. Syst. Lett. 6, 2 (2014).
[3] Melissa Azouaoui, Davide Bellizia, Ileana Buhan, Nicolas Debande, Sébastien

Duval, Christophe Giraud, Éliane Jaulmes, François Koeune, Elisabeth Oswald,
François-Xavier Standaert, and Carolyn Whitnall. 2020. A Systematic Appraisal
of Side Channel Evaluation Strategies. In SSR.

[4] Josep Balasch, Sebastian Faust, Benedikt Gierlichs, and Ingrid Verbauwhede.
2012. Theory and Practice of a Leakage Resilient Masking Scheme. In Asiacrypt.

[5] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-
Xavier Standaert. 2015. On the Cost of Lazy Engineering for Masked Software
Implementations. In CARDIS.

[6] Manuel Barbosa, Gilles Barthe, Karthikeyan Bhargavan, Bruno Blanchet, Cas
Cremers, Kevin Liao, and Bryan Parno. 2021. SoK: Computer-Aided Cryptogra-
phy. In IEEE SP.

[7] Gilles Barthe, Marc Gourjon, Benjamin Grégoire, Maximilian Orlt, Clara Paglia-
longa, and Lars Porth. 2021. Masking in Fine-Grained Leakage Models: Con-
struction, Implementation and Verification. TCHES 2021, 2 (2021).

[8] H. Bassen and G. Smith. 1983. Electric field probes–A review. TAP 31, 5 (1983).
[9] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, BryanWeeks,

and Louis Wingers. 2015. The SIMON and SPECK Lightweight Block Ciphers.
In DAC.

[10] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. InUSENIX
ATC.

[11] Daniel J. Bernstein. 2005. Cache-timing attacks on AES. Preprint available at
http://cr.yp.to/papers.html#cachetiming.

[12] Daniel J. Bernstein and Peter Schwabe. 2008. New AES Software Speed Records.
In Indocrypt.

[13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. 2014. The
Making of KECCAK. Cryptologia 38, 1 (2014).

[14] Guido Bertoni, Vittorio Zaccaria, Luca Breveglieri, Matteo Monchiero, and
Gianluca Palermo. 2005. AES Power Attack Based on Induced Cache Miss and
Countermeasure. In ITCC.

[15] Shivam Bhasin, Anupam Chattopadhyay, Annelie Heuser, Dirmanto Jap, Stjepan
Picek, and Ritu Ranjan Shrivastwa. 2020. Mind the Portability: AWarriors Guide

http://www.aoki.ecei.tohoku.ac.jp/crypto/web/cores.html
http://www.aoki.ecei.tohoku.ac.jp/crypto/web/cores.html
http://cr.yp.to/papers.html#cachetiming

through Realistic Profiled Side-channel Analysis. In NDSS.
[16] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent

Rijmen. 2014. Higher-Order Threshold Implementations. In Asiacrypt.
[17] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH CAN 39, 2
(2011).

[18] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw,
Y. Seurin, and C. Vikkelsoe. 2007. PRESENT: An Ultra-Lightweight Block Cipher.
In CHES.

[19] Billy Bob Brumley and Nicola Tuveri. 2011. Remote Timing Attacks Are Still
Practical. In ESORICS.

[20] Robert Locke Callan, Alenka G. Zajic, and Milos Prvulovic. 2014. A Practical
Methodology for Measuring the Side-Channel Signal Available to the Attacker
for Instruction-Level Events. In MICRO.

[21] Giovanni Camurati, Sebastian Poeplau, Marius Muench, Tom Hayes, and Au-
rélien Francillon. 2018. Screaming Channels: When Electromagnetic Side Chan-
nels Meet Radio Transceivers. In CCS.

[22] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. 1999.
Towards Sound Approaches to Counteract Power-Analysis Attacks. In CRYPTO.

[23] Zhimin Chen and Yujie Zhou. 2006. Dual-Rail Random Switching Logic: A
Countermeasure to Reduce Side Channel Leakage. In CHES.

[24] Thomas De Cnudde, Begül Bilgin, Benedikt Gierlichs, Ventzislav Nikov, Svetla
Nikova, and Vincent Rijmen. 2017. Does Coupling Affect the Security of Masked
Implementations?. In COSADE, Sylvain Guilley (Ed.).

[25] Jean-Sébastien Coron. 2014. Higher Order Masking of Look-Up Tables. In
Eurocrypt.

[26] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche.
2014. Higher-Order Side Channel Security and Mask Refreshing. In FSE.

[27] Joan Daemen and Vincent Rijmen. 2020. The Design of Rijndael - The Advanced
Encryption Standard (AES), Second Edition. Springer.

[28] Nicolas Debande, Maël Berthier, Yves Bocktaels, and Thanh-Ha Le. 2012. Profiled
Model Based Power Simulator for Side Channel Evaluation. Cryptology ePrint
Archive, Report 2012/703.

[29] John Demme, Robert Martin, AdamWaksman, and Simha Sethumadhavan. 2012.
Side-channel vulnerability factor: A metric for measuring information leakage.
In ISCA.

[30] Jerry den Hartog, Jan Verschuren, Erik P. de Vink, Jaap de Vos, and W. Wiersma.
2003. PINPAS: A Tool for Power Analysis of Smartcards. In SEC.

[31] ETH Zurich. [n.d.]. Pulp Platform. https://pulp-platform.org/. (accessed:
20-Nov-2021).

[32] Muhammad Arsath K. F, Vinod Ganesan, Rahul Bodduna, and Chester Rebeiro.
2020. PARAM: A Microprocessor Hardened for Power Side-Channel Attack
Resistance. In HOST.

[33] Omnia S. Fadl, Mohamed F. Abu-Elyazeed, Mohamed B. Abdelhalim, Has-
sanein H. Amer, and Ahmed H. Madian. 2016. Accurate dynamic power estima-
tion for CMOS combinational logic circuits with real gate delay model. Journal
of Advanced Research 7, 1 (2016).

[34] R.P. Feynman, R.B. Leighton, and M. Sands. 2011. The Feynman Lectures on
Physics, Vol. II: The NewMillennium Edition: Mainly Electromagnetism and Matter.
Basic Books.

[35] Wieland Fischer and Berndt M. Gammel. 2005. Masking at Gate Level in the
Presence of Glitches. In CHES.

[36] Georges Gagnerot. 2013. Étude des attaques et des contre-mesures associées sur
composants embarqués. Ph.D. Dissertation. Université de Limoges.

[37] Daniel Gajski and Robert H. Kuhn. 1983. New VLSI Tools - Guest Editors’
Introduction. Computer 16, 12 (1983).

[38] Neel Gala, Arjun Menon, Rahul Bodduna, G. S. Madhusudan, and V. Kamakoti.
2016. SHAKTI Processors: An Open-Source Hardware Initiative. In VLSI Design.

[39] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. 2001. Electromagnetic
Analysis: Concrete Results. In CHES.

[40] Si Gao, Elisabeth Oswald, and Dan Page. 2021. Reverse Engineering the Micro-
Architectural Leakage Features of a Commercial Processor. Cryptology ePrint
Archive, Report 2021/794.

[41] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018. A survey ofmicroar-
chitectural timing attacks and countermeasures on contemporary hardware. J.
Cryptographic Engineering 8, 1 (2018).

[42] Daniel Genkin, Adi Shamir, and Eran Tromer. 2014. RSA Key Extraction via
Low-Bandwidth Acoustic Cryptanalysis. In CRYPTO.

[43] Ashrujit Ghoshal and Thomas De Cnudde. 2017. Several Masked Implementa-
tions of the Boyar-Peralta AES S-Box. In Indocrypt.

[44] Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and Roderick
Bloem. 2021. Coco: Co-Design and Co-Verification of Masked Software Imple-
mentations on CPUs. In USENIX Security.

[45] G. Goodwill, J.J.B. Jun, and P.Rohatgi. 2018. A testing methodology for side
channel resistance validation. NIST non-invasive attack testing workshop (2018).

[46] Grant agreement ID: 507270. 2004. Side Channel Analysis Resistant Design Flow.
https://cordis.europa.eu/project/id/507270. [Online; accessed 20-Nov-2021].

[47] Hannes Gross, Stefan Mangard, and Thomas Korak. 2016. Domain-Oriented
Masking: Compact Masked Hardware Implementations with Arbitrary Protec-
tion Order. In TIS.

[48] Hannes Groß, David Schaffenrath, and Stefan Mangard. 2017. Higher-Order
Side-Channel Protected Implementations of KECCAK. In DSD.

[49] Miao Tony He, Jungmin Park, Adib Nahiyan, Apostol Vassilev, Yier Jin, and
Mark Mohammad Tehranipoor. 2019. RTL-PSC: Automated Power Side-Channel
Leakage Assessment at Register-Transfer Level. In VTS.

[50] Sorin A. Huss, Marc Stöttinger, and Michael Zohner. 2013. AMASIVE: An Adapt-
able andModular Autonomous Side-Channel Vulnerability Evaluation Framework.

[51] Yuval Ishai, Amit Sahai, and David Wagner. 2003. Private Circuits: Securing
Hardware against Probing Attacks. In CRYPTO.

[52] Yuval Ishai, Amit Sahai, and David A. Wagner. 2003. Private Circuits: Securing
Hardware against Probing Attacks. In CRYPTO, Dan Boneh (Ed.).

[53] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In CRYPTO.

[54] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.
In CRYPTO.

[55] Juliane Krämer, Dmitry Nedospasov, Alexander Schlösser, and Jean-Pierre
Seifert. 2013. Differential Photonic Emission Analysis. In COSADE.

[56] Yann Le Corre, Johann Großschädl, and Daniel Dinu. 2018. Micro-architectural
Power Simulator for Leakage Assessment of Cryptographic Software on ARM
Cortex-M3 Processors. In COSADE.

[57] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon,
Claudio Canella, and Daniel Gruss. 2021. PLATYPUS: Software-based Power
Side-Channel Attacks on x86. In IEEE SP.

[58] Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yinqian Zhang. 2021. A Survey
of Microarchitectural Side-channel Vulnerabilities, Attacks and Defenses in
Cryptography. CoRR 2103.14244.

[59] lowRISC contributors. [n.d.]. Open Titan. https://opentitan.org/. (accessed:
20-Nov-2021).

[60] Stefan Mangard. 2004. Hardware Countermeasures against DPA – A Statistical
Analysis of Their Effectiveness. In CT-RSA.

[61] Stefan Mangard, Thomas Popp, and Berndt M. Gammel. 2005. Side-Channel
Leakage of Masked CMOS Gates. In CT-RSA.

[62] BenMarshall, Dan Page, and JamesWebb. 2021. MIRACLE:MIcRo-ArChitectural
Leakage Evaluation. Cryptology ePrint Archive, Report 2021/261.

[63] David McCann, Elisabeth Oswald, and Carolyn Whitnall. 2017. Towards Practi-
cal Tools for Side Channel Aware Software Engineering: ‘Grey Box’ Modelling
for Instruction Leakages. In USENIX Security Symposium.

[64] Thomas S. Messerges. 2000. Power Analysis Attacks and Countermeasures for
Cryptographic Algorithms. Ph.D. Dissertation. University of Illinois at Chicago.

[65] Thomas S. Messerges. 2000. Securing the AES Finalists Against Power Analysis
Attacks. In FSE.

[66] Lauren De Meyer, Elke De Mulder, and Michael Tunstall. 2020. On the Effect of
the (Micro)Architecture on the Development of Side-Channel Resistant Software.
Cryptology ePrint Archive, Report 2020/1297.

[67] Thorben Moos, Amir Moradi, Tobias Schneider, and François-Xavier Standaert.
2019. Glitch-Resistant Masking Revisited: or Why Proofs in the Robust Probing
Model are Needed. TCHES 2019, 2 (2019).

[68] Adib Nahiyan, Jungmin Park, Miao Tony He, Yousef Iskander, Farimah Farah-
mandi, Domenic Forte, and Mark Mohammad Tehranipoor. 2020. SCRIPT:
A CAD Framework for Power Side-channel Vulnerability Assessment Using
Information Flow Tracking and Pattern Generation. ACM TODAES 25, 3 (2020).

[69] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. 2006. Threshold
Implementations Against Side-Channel Attacks and Glitches. In Information
and Communications Security.

[70] Colin O’Flynn and Jasper van Woudenberg. 2021. The Hardware Hacking Hand-
book: Breaking Embedded Security with Hardware Attacks. No Starch Press.

[71] Dan Page. 2002. Theoretical Use of Cache Memory as a Cryptanalytic Side-
Channel. Cryptology ePrint Archive, Report 2002/169.

[72] Kostas Papagiannopoulos and Nikita Veshchikov. 2017. Mind the Gap: Towards
Secure 1st-Order Masking in Software. In COSADE.

[73] Davide Poggi, Philippe Maurine, Thomas Ordas, Alexandre Sarafianos, and
Jérémy Raoult. 2020. Finding EM leakages at design stage: a simulation method-
ology. Cryptology ePrint Archive, Report 2020/1198.

[74] Jean-Jacques Quisquater and David Samyde. 2001. ElectroMagnetic Analy-
sis (EMA): Measures and Counter-measures for Smart Cards. In Smart Card
Programming and Security.

[75] Jan M. Rabaey. 2009. Low Power Design Essentials. Springer.
[76] Oscar Reparaz. 2016. Detecting Flawed Masking Schemes with Leakage Detec-

tion Tests. In FSE.
[77] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid

Verbauwhede. 2015. Consolidating Masking Schemes. In CRYPTO.
[78] Unai Rioja, Lejla Batina, and Igor Armendariz. 2020. When Similarities Among

Devices are Taken for Granted: Another Look at Portability. In Africacrypt.

https://pulp-platform.org/
https://cordis.europa.eu/project/id/507270
https://opentitan.org/

[79] Riscure. 2002. Inspector SCA. https://www.riscure.com/security-tools/
inspector-sca. [Online; accessed 20-Nov-2021].

[80] Matthieu Rivain and Emmanuel Prouff. 2010. Provably Secure Higher-Order
Masking of AES. In CHES.

[81] Theodore Roth and Klaus Rudolph. 2001. SimulAVR. https://www.nongnu.org/
simulavr/. [Online; accessed 20-Nov-2021].

[82] Satoh Lab. 2017. Lookup table based AES Verilog design. http://satoh.cs.uec.ac.
jp/SAKURA/hardware/SAKURA-G.html. (accessed: 20-Nov-2021).

[83] Falk Schellenberg, Dennis R. E. Gnad, Amir Moradi, and Mehdi B. Tahoori. 2021.
An Inside Job: Remote Power Analysis Attacks on FPGAs. IEEE Des. Test 38, 3
(2021).

[84] Kai Schramm and Christof Paar. 2006. Higher Order Masking of the AES. In
CT-RSA.

[85] Nader Sehatbakhsh, Baki Berkay Yilmaz, Alenka G. Zajic, and Milos Prvulovic.
2020. EMSim: A Microarchitecture-Level Simulation Tool for Modeling Electro-
magnetic Side-Channel Signals. In HPCA.

[86] Madura A. Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni, Markus
Wagner, and Yuval Yarom. 2021. Rosita: Towards Automatic Elimination of
Power-Analysis Leakage in Ciphers. In NDSS.

[87] Danilo Sijacic, Josep Balasch, Bohan Yang, Santosh Ghosh, and Ingrid Ver-
bauwhede. 2020. Towards efficient and automated side-channel evaluations at
design time. J. Cryptogr. Eng. 10, 4 (2020).

[88] D. Singh, J.M. Rabaey, M. Pedram, F. Catthoor, S. Rajgopal, N. Sehgal, and T.J.
Mozdzen. 1995. Power conscious CAD tools and methodologies: a perspective.
Proc. IEEE 83, 4 (1995).

[89] Patanjali SLPSK, Prasanna Karthik Vairam, Chester Rebeiro, and V. Kamakoti.
2019. KARNA: A Gate-Sizing based Security Aware EDA Flow for Improved
Power Side-Channel Attack Protection. In ICCAD.

[90] Céline Thuillet, Philippe Andouard, and Olivier Ly. 2009. A Smart Card Power
Analysis Simulator. In CSE (2).

[91] Kris Tiri, David D. Hwang, Alireza Hodjat, Bo-Cheng Lai, Shenglin Yang, Patrick
Schaumont, and Ingrid Verbauwhede. 2005. Prototype IC with WDDL and
Differential Routing - DPA Resistance Assessment. In CHES.

[92] Kris Tiri and Ingrid Verbauwhede. 2006. A Digital Design Flow for Secure
Integrated Circuits. TCAD 25, 7 (2006).

[93] Vivek Tiwari, Sharad Malik, Andrew Wolfe, and Mike Tien-Chien Lee. 1996.
Instruction Level Power Analysis and Optimization of Software. In VLSI Design.

[94] Elena Trichina, Tymur Korkishko, and Kyung Hee Lee. 2005. Small Size, Low
Power, Side Channel-Immune AES Coprocessor: Design and Synthesis Results.
In Advanced Encryption Standard – AES.

[95] Ali Jahanian Vahid Samadi Bokharaie. 2021. Power side-channel leakage as-
sessment and locating the exact sources of leakage at the early stages of ASIC
design process. J. Supercomput (2021).

[96] Vamshi PN. 2019. Hardware-implementation of AES Verilog.
https://github.com/pnvamshi/Hardware-Implementation-of-AES-Verilog.
(accessed: 20-Nov-2021).

[97] Nikita Veshchikov. 2014. SILK: high level of abstraction leakage simulator for
side channel analysis. In PPREW@ACSAC.

[98] Nikita Veshchikov and Sylvain Guilley. 2017. Use of Simulators for Side-Channel
Analysis. In EuroS&P Workshops.

[99] Matthew Walker, Sascha Bischoff, Stephan Diestelhorst, Geoff Merrett, and
Bashir Al-Hashimi. 2018. Hardware-Validated CPU Performance and Energy
Modelling. In ISPASS.

[100] Dan Walters, Andrew Hagen, and Eric Kedaigle. 2014. SLEAK: A Side-Channel
Leakage Evaluator and Analysis Kit. Technical Report. The MITRE Corporation.
[Online; accessed 20-Nov-2021].

[101] FelixWegener andAmirMoradi. 2018. A First-Order SCAResistant AESWithout
Fresh Randomness. In COSADE.

[102] Yuan Yao, Tarun Kathuria, Baris Ege, and Patrick Schaumont. 2020. Architecture
Correlation Analysis (ACA): Identifying the Source of Side-channel Leakage at
Gate-level. In HOST.

[103] Wentao Zhang, Zhenzhen Bao, Dongdai Lin, Vincent Rijmen, Bohan Yang, and
Ingrid Verbauwhede. 2015. RECTANGLE: a bit-slice lightweight block cipher
suitable for multiple platforms. Sci. China Inf. Sci. 58, 12 (2015).

[104] Mark Zhao and G. Edward Suh. 2018. FPGA-Based Remote Power Side-Channel
Attacks. In IEEE-SP.

https://www.riscure.com/security-tools/inspector-sca
https://www.riscure.com/security-tools/inspector-sca
https://www.nongnu.org/simulavr/
https://www.nongnu.org/simulavr/
http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html
http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html

A METRICS FOR COMPARING SIMULATED
AND REAL TRACES

Here we give some examples:
● Dynamic Time Warping. To evaluate SILK [97], the authors com-
pute the distance between a set of measured traces and the sim-
ulator’s output. Dynamic Time Warping (DTW) computes the
distance between two temporal series, even with different ele-
ments. Several leakage models are used to generate simulated
traces. The authors instantiate DTW with two distance metrics,
Euclidean and correlation-based distance. For a fair comparison,
they add noise to the simulated traces. Notably, the two used
distance metrics give different results regarding what constitutes
a realistic trace set.

● Power correlation. Although the term is defined in [102], this is a
well-known measure used when analyzing side-channel leakage.
The approach assumes the knowledge of the key and requires the
explicit choice of a target variable and leakagemodel. The authors
of ELMO [63] compare (visually) the power correlation trace
produced by ELMO with the power correlation trace obtained
from measured traces. If the correlation traces follow a similar
trend, the model and the measured traces capture similar side-
channel leakage.
● Leakage detection comparison. The de facto technique for leak-
age detection is TVLA [45]. It comes then as no surprise that
the practice of comparing a 𝑡-test trace produced by a leakage
emulator with the 𝑡-test trace produced by the reference traces,
using either a fixed vs. random 𝑡-test [63, 86] or a fixed vs. fixed
𝑡-test [76] is widespread. To compute the 𝑡-test trace, the datasets
are prepared in advance by feeding the cryptographic algorithm
with a fixed or a random plaintext. Next to its simplicity, this
test is non-specific, meaning that it does not target one specific
variable. The classical application is a visual check to ensure that
the simulated and reference 𝑡-traces match the identified leaking
points.
● DPA performance. To demonstrate themerit of a profiled emulator,
Debande et al. [28] compares the evolution of a DPA attack, in
terms of guessing entropy, between a set of measured traces, a
set of traces generated by a profiled leakage model, and a set of
traces generated by a non-profiled model. Although the attack
performance of the non-profiled leakage model is superior to that
of the measured traces (and that of the traces produced by the
profiled leakage models), the conclusion is that profiled models
that closely follow the behavior of measured traces are preferred.
The main indicator for a desirable output is to match the trend of
guessing entropy and the simulated traces’ success rate with one
of the real traces. We note that DPA is capable of tracking the
performance for one intermediate target value. NCSIM [33] uses
the same metric, and the similarity of a DPA attack performed
on the internal MOV operation demonstrates the advantage of
using an emulator for the design of a secure chip. The authors of
PARAM [32] also use DPA to compare the reference architecture’s
resistance before and after applying hardening countermeasures.

B CASE STUDIES
In this section, we explore the answers to the question:How effective
are the existing tools at verifying and eliminating SCA vulnerabil-
ities? Most case studies will showcase the tool’s ability to verify

leakage (find the cause for producing leakage) and mitigate the
leakage (eliminate it manually or automatically). The depth and
breadth of the presented cases vary significantly between the dif-
ferent contributions. While some verification tools showcase a toy
example [30], others explore a wide variety of scenarios. The case
study will reproduce a known flaw, introduce one in an otherwise
secure design, or seldom use the tool to find a new unknown vulner-
ability for a leakage verification tool. In the following, we present
a representative selection of use cases.

B.1 Software implementation of cryptographic
algorithms

Reparaz [76] tests the security of six high-order implementations.
The first is a “smoke test” where the aim is to reproduce the flaw
found by [80] for the first-order masking scheme proposed by [4].
The emulator performs six fixed vs. fixed TVLA tests and reports
that five of the six tests show leakage. The authors apply the same
test to the first-order secure table recomputation scheme proposed
by [25] which, as expected, “on the strength of the found evidence”
is reported to be secure. Next, the authors use the tool to reproduce
the second-order flaw spotted by [26] in the masking scheme pro-
posed by [80]. The authors report that it takes the tool five seconds
to find the flaw, including the time to identify the cause. The tool
further reproduces the third-order vulnerability spotted by [25] in
the technique used for refreshing the mask in the scheme proposed
by [80]. The tools finds this flaw in less than a second. A more
complex case for the tool (200 million traces and eight hours of sim-
ulation) is to reproduce the observations from [77] on higher-order
implementations [16]. The authors also report a new second-order
flaw found in [84], which, once found, is easily proved.

B.2 Hardware implementation of
cryptographic algorithms

KARNA [89] is evaluated with three open-source cores. The first
is a bit-serial implementation of the Simon block cipher [2]3. The
tool performs three iterations, using TVLA with 8000 inputs and
removes the leaking gate. The netlist is synthesized at 28 nm cell
size. The second is a PRESENT core4, a minimal design which
after one iteration achieves side-channel resilience. The third is
an optimized AES core [12]5, on which a DPA attack is performed
after the place-and-route stage, and the design is shown not to leak
information with 100 000 traces. Compared with the unoptimized
AES synthesized design, where the result is shown to reveal the
correct key byte at approximately 2 000 traces. KARNA can achieve
a user-specified security level in all three designs with no impact
on the delay or the number of gates and a 20% increase in the
utilization area.

RTL-PSC [49] is evaluated on two AES designs based on Galois
Field (GF) [1] and Look-up Table (LUT) [82]. The tool is used to
identify the leaky modules in the design, using a combination of
Kullback-Leibler divergence and success rate. The tool is validated
3reference implementation, https://opencores.org/projects/simon_core
4reference implementation https://opencores.org/projects/present
5reference implementation https://opencores.org/projects/tiny_aes

https://opencores.org/projects/simon_core
https://opencores.org/projects/present
https://opencores.org/projects/tiny_aes

with both a gate-level netlist simulation and an FPGA simulation.
The authors compare the Pearson correlation of the RTL simulations
(produced by the tool) with the gate-level netlist’s KL-divergence
trace and conclude that the tool is successful.

AMASIVE [50] is used to analyze an unprotected hardware im-
plementation of the PRESENT cipher [18] for the first and the last
round. The tool identifies hypothesis functions for the HW and HD
leakage models. The authors mount a CPA attack to confirm the
tool’s attack vector and report recovering the key within 10 000
traces.

B.3 Hardening of non-cryptographic hardware
PARAM [32] is used to produce a hardened implementation of a
Shakti-C [38] core. The approach used to secure the software AES
implementation deviates from the classical application of coun-
termeasures. The authors identify and remove the leakage from
each hardware component of the microprocessor. The DPA results
in terms of the number of traces vs. correlation scores show the
hardened microprocessor’s resilience.

B.4 Combination of software implementations
running on a physical target

The case study for MAPS focuses on showcasing the design flow
with the tool. The specific example is a naive implementation of
SIMON [9] protected with Trichina AND gate [94], which aims to
minimize the number of execution cycles. The authors simulate the
implementation of this cipher with and without pipeline leakage.
Using a fixed vs. random 𝑡-test, the authors show that both instances
leak information. In the next iteration, MAPS identifies the leakage
due to register reuse. The remaining leakage comes from the two
pipeline registers. After fixing the two pipeline registers’ leakage,
the 𝑡-test obtained from the simulated traces show no leaky points.
As a final step, the authors perform a 𝑡-test on a set of reference
traces measured from a physical implementation, which shows a
few remaining leakage points.

SAVRASCA [98] is used to find a flaw in the AES implementation
used for Version 4 of the DPA contest6. Using the tool, the authors

note that the simulated traces size depends on the value that the
microcontroller manipulates, even though the implementation is
running in a constant number of cycles. Analyzing the implementa-
tion, the authors find that the number of register accesses depended
on the manipulated value. In response to this finding, the new ver-
sion of the DPA contest v4.2 fixed the implementation and released
a new set of traces.

ASCOLD [72] is used to develop a hardened first-order, ISW-
based [51] S-boxwith a bit-sliced RECTANGLE implementation [103].
The authors evaluate the performance of the hardened implemen-
tation for two different security objectives. The first is an efficient
implementation where the registers are cleared on a need-to basis
to avoid overwrite and remnant effects. The second is a conserva-
tive implementation, which adds to the efficient implementation of
dummy instructions’ insertion through register/memory clearing.
Non-specific TVLA is used to evaluate the strengths of hardening
countermeasure.
6http://www.dpacontest.org/v4/rsm_doc.php

COCO uses the open-source IBEX core7, part of the PULP plat-
form [31] and the OpenTitan [59] project. The main application
of COCO is the verification of masked software implementations
running on hardware specified at gate-level netlist. A considerable
selection of masked circuits, which cover domain-oriented mask-
ing (DOM) AND gate [47], Ishai-Sahai-Wagner (ISW) AND [77],
Threshold implementation (TI) AND [69] and larger implementa-
tions DOM Keccak S-box [13, 48], DOM AES S-box [43] and the
Trichina AND gate [94] are presented to demonstrate the effective-
ness of the tool. The scenarios cover two case studies with intention-
ally injected vulnerabilites [47, 48]. The implementations also cover
second-order security [47, 48] and third-order security [47] (for a
complete overview see Table 3 in [44]). To demonstrate COCO’s
ability to deliver a secure implementation, the authors map a sample
of the verified netlist of IBEX cores and the DOM Keccak S-box [48]
onto a Xilinx Spartan-6 FPGA. The design is then evaluated using
TVLA and shown not to leak information at 100 000 traces.

7reference implementation https://github.com/lowRISC/ibex

http://www.dpacontest.org/v4/rsm_doc.php
https://github.com/lowRISC/ibex

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Side-Channel Leakage
	2.2 Leakage Models
	2.3 Traces
	2.4 Detection, Verification, and Mitigation

	3 Pre- and Post-silicon Modeling of Side-channel Leakage
	3.1 Our Framework
	3.2 Causes of Side-Channel Leakage
	3.3 Pre- and post-silicon tools for Side-Channel Leakage

	4 Post-silicon tooling
	4.1 Leakage detection at post-silicon stage
	4.2 Leakage verification at post-silicon stage
	4.3 Leakage mitigation at post-silicon stage

	5 Pre-silicon tooling
	5.1 Leakage detection at pre-silicon stage
	5.2 Leakage verification at pre-silicon stage
	5.3 Leakage mitigation at pre-silicon stage

	6 Metrics and Evaluation
	6.1 Metrics for evaluating the output of leakage emulator's
	6.2 Metrics for evaluating the quality of the leakage model
	6.3 Evaluating Usability

	7 Open problems in designing side-channel leakage emulators
	References
	A Metrics for comparing simulated and real traces
	B Case studies
	B.1 Software implementation of cryptographic algorithms
	B.2 Hardware implementation of cryptographic algorithms
	B.3 Hardening of non-cryptographic hardware
	B.4 Combination of software implementations running on a physical target

